Linear control systems / Charles E. Rohrs, James L. Melsa and Donald G. Schultz ; based on the classical text by James L. Melsa, Donald G. Schultz.

By: Contributor(s): Material type: TextTextPublication details: New York : McGraw Hill Education, c1993Description: xvi, 555 pages : illustrations ; 25 cmISBN:
  • 70415250
Subject(s): LOC classification:
  • QA 402.3 .R64 1993
Contents:
1. Introduction to Automatic Control Systems -- 1.2. Closed-Loop vs. Open-Loop Control -- 1.3. Historical and Mathematical Background -- 2. Plant Representation -- 2.2. Transfer Functions and Block Diagrams -- 2.3. State-Variable Representation -- 2.4. Phase Variables -- 2.5. Physical Variables -- 2.6. Linear Transformation of Variables -- 2.7. Limitations of Mathematical Models -- 2.A Appendix to Chapter 2 -- Airplane Dynamics -- 3. Closed-Loop-System Representation -- 3.2. The Effects of Feedback in the Output Feedback Problem -- 3.3. Linear State-Variable Feedback -- An Example -- 3.4. Linear State-Variable Feedback -- General Case -- 3.5. Controllability and Pole Placement -- 4. Time Response -- 4.2. Partial-Fraction Expansion Methods -- 4.3. Step Function Response of Dominantly First-Order Systems -- 4.4. Step Function Response of Dominantly Second-Order Systems -- 4.5. State-Variables Time Response -- 4.6. Time-Domain Methods -- 4.7. Steady-State Errors to Simple Inputs -- 5. Frequency Response -- 5.2. Frequency Response Function -- 5.3. Bode Magnitude Plot -- Straight Line Approximation -- 5.4. Bode Phase Plot -- Straight Line Approximation -- 5.5. Plant Identification -- 5.6. Accounting for Uncertainty in Modeling -- 6. Stability -- 6.2. Definitions of Stability -- 6.3. The Routh-Hurwitz Criterion -- 6.4. The Nyquist Criterion -- 6.5. Closed-Loop Response and Nyquist Diagrams -- 6.6. Robust Stability -- 6.7. Performance and Robustness -- 7. The Root Locus Method -- 7.2. The Root Locus Method -- 7.3. Additional Root Locus Construction Rules -- 7.4. Additional Examples and Root Locus Rules for Negative K -- 7.5. The Closed-Loop Response Plane -- 7.6. The Root Locus Using Parameters Other Than K -- 7.A Appendix to Chapter 7 -- Bypassing the Root Locus -- 8. The Design of Control Systems -- 8.2. General Principles for Designing Series Compensators Using Frequency Response Techniques -- 8.3. Series Compensator Building Blocks: Proportional Control -- 8.4. Series Compensator Building Blocks: Lag Compensators, PI Compensators -- 8.5. Series Compensator Building Blocks: Lead Compensators, PID Compensators -- 8.6. Series Compensator Building Blocks: High Frequency Roll-Off, Notch Filters, Canceling Plant Dynamics -- 8.7. A Realistic Design Example Using a Lead-Lag Compensator -- 8.8. An Example Using Roll-Off and a Notch Filter to Cancel Plant Dynamics -- 8.9. Controlling Unstable Plants -- 8.10. Controlling Plants with Right Half-Plane Zeros -- 8.11. Pole Placement Control -- 8.12. State-Variable Feedback -- The Advantage of Extra Measurements -- App. A The Laplace Transform -- A Summary -- App. B Laplace Transform Table -- App. C Matrix Inversion, Eigenvalues, and Eigenvectors -- App. D Computer Aided Design (CAD) Tools for Control Systems: Introduction to MATLAB[superscript R].
Summary: An updated edition of Melsa and Schultz' "Linear Control Systems", this undergraduate text presents the best of modern topics such as robustness, ramifications of model inaccuracies on the design of control systems, computer examples using MATLAB, and design problems, as well as applications.
Item type: Books
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Collection Call number Copy number Status Date due Barcode
Books Books National University - Manila LRC - Main General Circulation Gen. Ed. - COE GC QA 402.3 .R64 1993 (Browse shelf(Opens below)) c.1 Available NULIB000006294

Includes bibliographical references (pages 540-544) and index.

1. Introduction to Automatic Control Systems -- 1.2. Closed-Loop vs. Open-Loop Control -- 1.3. Historical and Mathematical Background -- 2. Plant Representation -- 2.2. Transfer Functions and Block Diagrams -- 2.3. State-Variable Representation -- 2.4. Phase Variables -- 2.5. Physical Variables -- 2.6. Linear Transformation of Variables -- 2.7. Limitations of Mathematical Models -- 2.A Appendix to Chapter 2 -- Airplane Dynamics -- 3. Closed-Loop-System Representation -- 3.2. The Effects of Feedback in the Output Feedback Problem -- 3.3. Linear State-Variable Feedback -- An Example -- 3.4. Linear State-Variable Feedback -- General Case -- 3.5. Controllability and Pole Placement -- 4. Time Response -- 4.2. Partial-Fraction Expansion Methods -- 4.3. Step Function Response of Dominantly First-Order Systems -- 4.4. Step Function Response of Dominantly Second-Order Systems -- 4.5. State-Variables Time Response -- 4.6. Time-Domain Methods -- 4.7. Steady-State Errors to Simple Inputs -- 5. Frequency Response -- 5.2. Frequency Response Function -- 5.3. Bode Magnitude Plot -- Straight Line Approximation -- 5.4. Bode Phase Plot -- Straight Line Approximation -- 5.5. Plant Identification -- 5.6. Accounting for Uncertainty in Modeling -- 6. Stability -- 6.2. Definitions of Stability -- 6.3. The Routh-Hurwitz Criterion -- 6.4. The Nyquist Criterion -- 6.5. Closed-Loop Response and Nyquist Diagrams -- 6.6. Robust Stability -- 6.7. Performance and Robustness -- 7. The Root Locus Method -- 7.2. The Root Locus Method -- 7.3. Additional Root Locus Construction Rules -- 7.4. Additional Examples and Root Locus Rules for Negative K -- 7.5. The Closed-Loop Response Plane -- 7.6. The Root Locus Using Parameters Other Than K -- 7.A Appendix to Chapter 7 -- Bypassing the Root Locus -- 8. The Design of Control Systems -- 8.2. General Principles for Designing Series Compensators Using Frequency Response Techniques -- 8.3. Series Compensator Building Blocks: Proportional Control -- 8.4. Series Compensator Building Blocks: Lag Compensators, PI Compensators -- 8.5. Series Compensator Building Blocks: Lead Compensators, PID Compensators -- 8.6. Series Compensator Building Blocks: High Frequency Roll-Off, Notch Filters, Canceling Plant Dynamics -- 8.7. A Realistic Design Example Using a Lead-Lag Compensator -- 8.8. An Example Using Roll-Off and a Notch Filter to Cancel Plant Dynamics -- 8.9. Controlling Unstable Plants -- 8.10. Controlling Plants with Right Half-Plane Zeros -- 8.11. Pole Placement Control -- 8.12. State-Variable Feedback -- The Advantage of Extra Measurements -- App. A The Laplace Transform -- A Summary -- App. B Laplace Transform Table -- App. C Matrix Inversion, Eigenvalues, and Eigenvectors -- App. D Computer Aided Design (CAD) Tools for Control Systems: Introduction to MATLAB[superscript R].

An updated edition of Melsa and Schultz' "Linear Control Systems", this undergraduate text presents the best of modern topics such as robustness, ramifications of model inaccuracies on the design of control systems, computer examples using MATLAB, and design problems, as well as applications.

There are no comments on this title.

to post a comment.