000 01573nam a2200217Ia 4500
003 NULRC
005 20250520102950.0
008 250520s9999 xx 000 0 und d
020 _a9783030053178
040 _cNULRC
050 _aQ 325.5 .A98 2019
245 0 _aAutomated machine learning :
_bmethods, systems, challenges /
_cedited by Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren
260 _aSwitzerland :
_bSpringer,
_cc2019
300 _axiv, 219 pages :
_billustrations ;
_c24 cm
504 _aIncludes bibliographical references.
505 _aPart I : AutoML methods -- 1. Hyperparameter optimization -- 2. Meta-learning -- 3. Neural architecture search -- Part II : AutoML systems -- 4. Auto-WEKA : automatic model selection and hyperparameter optimization in WEKA -- 5. Hyperopt-sklearn -- 6. Auto-sklearn : efficient and robust automated machine learning -- 7. Towards automatically-tuned deep neural networks -- 8. TPOT : A Tree-based pipeline optimization tool for automating machine learning -- 9. The Automatic statistician -- Part II : AutoML challenges -- 10. Analysis of the autoML challenge series 2015-2018
520 _aThis open access book presents the first comprehensive overview of general methods in autmated machine learning (AutoML), collects descriptions of existing systems based on these methiods, and discusses the first series of international challenges of AutoML systems.
650 _aARTIFICIAL INTELLIGENCE
700 _aHutter, Frank ;Kotthoff, Lars;Vanschoren, Joaquin
_eeditor;co-editor;co-editor
942 _2lcc
_cBK
999 _c20016
_d20016