000 | 01573nam a2200217Ia 4500 | ||
---|---|---|---|
003 | NULRC | ||
005 | 20250520102950.0 | ||
008 | 250520s9999 xx 000 0 und d | ||
020 | _a9783030053178 | ||
040 | _cNULRC | ||
050 | _aQ 325.5 .A98 2019 | ||
245 | 0 |
_aAutomated machine learning : _bmethods, systems, challenges / _cedited by Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren |
|
260 |
_aSwitzerland : _bSpringer, _cc2019 |
||
300 |
_axiv, 219 pages : _billustrations ; _c24 cm |
||
504 | _aIncludes bibliographical references. | ||
505 | _aPart I : AutoML methods -- 1. Hyperparameter optimization -- 2. Meta-learning -- 3. Neural architecture search -- Part II : AutoML systems -- 4. Auto-WEKA : automatic model selection and hyperparameter optimization in WEKA -- 5. Hyperopt-sklearn -- 6. Auto-sklearn : efficient and robust automated machine learning -- 7. Towards automatically-tuned deep neural networks -- 8. TPOT : A Tree-based pipeline optimization tool for automating machine learning -- 9. The Automatic statistician -- Part II : AutoML challenges -- 10. Analysis of the autoML challenge series 2015-2018 | ||
520 | _aThis open access book presents the first comprehensive overview of general methods in autmated machine learning (AutoML), collects descriptions of existing systems based on these methiods, and discusses the first series of international challenges of AutoML systems. | ||
650 | _aARTIFICIAL INTELLIGENCE | ||
700 |
_aHutter, Frank ;Kotthoff, Lars;Vanschoren, Joaquin _eeditor;co-editor;co-editor |
||
942 |
_2lcc _cBK |
||
999 |
_c20016 _d20016 |