000 01984nam a2200229Ia 4500
003 NULRC
005 20250520102929.0
008 250520s9999 xx 000 0 und d
020 _a471500305
040 _cNULRC
050 _aQA 21 .D85 1990
100 _aDunham, William
_eauthor
245 0 _aJourney through genius :
_bthe great theorems of mathematics /
_cWilliam Dunham
250 _aWiley Science Editions
260 _aNew York :
_bJohn Wiley & Son, Inc.,
_cc1990
300 _axiii, 300 pages :
_billustrations ;
_c20 cm.
504 _aIncludes bibliographical references.
505 _aChapter1. Hippocrates' quadrature of the Lune (ca. 440 B.C.) -- Chapter2. Euclid's proof of the Pythagorean Theorem (ca. 300 B.C.) -- Chapter3. Euclid and the infinitude of primes (ca. 300 B.C.) -- Chapter4. Archimedes' determination of circular area (ca. 225 B.C.) Chapter5. Heron's formula for triangular area (ca. A.D. 75) -- Chapter6. Cardano and the solution of the cubic (1545) -- Chapter7. A gem from Isaac Newton (late 1660s) -- Chapter8. The Bernoullis and the Harmonic series (1689) -- Chapter9. The extraordinary sums of Leonhard Euler (1734) -- Chapter10. A sampler of Euler's number theory (1736) -- Chapter11. The non-denumerability of the continuum (1874) -- Chapter12. Cantor and the transfinite realm (1891) .
520 _aA rare combination of the historical, biographical, and mathematical, Journey through Genius is a fascinating introduction to a neglected field of human creativity. Now William Dunham gives them the attention they deserve. Dunham places each theorem within its historical context and explores the very human and often turbulent life of the creators - from Archimedes, the absent-minded theoretician whose absorption in his work often precluded eating or bathing to Gerolamo Cardano, the sixteenth-century mathematician whose accomplishments flourished despite a bizarre array of misadventures
650 _aBIOGRAPHIES
942 _2lcc
_cBK
999 _c19084
_d19084