000 | 01984nam a2200229Ia 4500 | ||
---|---|---|---|
003 | NULRC | ||
005 | 20250520102827.0 | ||
008 | 250520s9999 xx 000 0 und d | ||
020 | _a9780128015223 | ||
040 | _cNULRC | ||
050 | _aQ 325.5 .T44 2015 | ||
100 |
_aTheoridis, Sergios. _eauthor |
||
245 | 0 |
_aMachine learning : _ba Bayesian and optimization perspective / _cSergios Theodoridis |
|
260 |
_a[Place of publication not identifed] : _b[publisher not identified], _cc2015 |
||
300 |
_a1,075 pages : _billustrations ; _c24 cm. |
||
365 | _bUSD180.91 | ||
504 | _aIncludes index. | ||
505 | _aChapter1. Probability and stochastic processes -- Chapter2. Learning in parametric modeling: basic concepts and directions -- Chapter3. Mean-square error linear estimation -- Chapter4. Stochastic gradient descent: the LMS algorithm -- Chapter5. The least-squares family -- Chapter6. Classification: a tour of the classics -- Chapter7. Parameter learning: a convex analytic path -- Chapter8. Sparsity-aware learning: concepts and theoretical foundations -- Chapter9. Sparcity-aware learning: algorithms and applications -- Chapter10. Learning in reproducing Kernel Hilbert spaces -- Chapter11. Bayesian learning: inference and the EM algorithm -- Chapter12. Bayesian learning: approximate inference and nonparametric models -- Chapter13. Monte Carlo methods -- Chapter14. Probabilistic graphical models: Part I -- Chapter15. Probabilistic graphical models: Part II -- Chapter16. Particle filtering -- Chapter17. Neural networks and deep learning -- Chapter18. Dimensionality reduction and Latent Variables Modeling . | ||
520 | _aThis tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches--which are based on optimization techniques--together with the Bayesian inference approach, whose essence lies in the use of a hierarchy of probabilistic models. | ||
650 | _aMACHINE LEARNING | ||
942 |
_2lcc _cBK |
||
999 |
_c16325 _d16325 |