000 01984nam a2200229Ia 4500
003 NULRC
005 20250520102827.0
008 250520s9999 xx 000 0 und d
020 _a9780128015223
040 _cNULRC
050 _aQ 325.5 .T44 2015
100 _aTheoridis, Sergios.
_eauthor
245 0 _aMachine learning :
_ba Bayesian and optimization perspective /
_cSergios Theodoridis
260 _a[Place of publication not identifed] :
_b[publisher not identified],
_cc2015
300 _a1,075 pages :
_billustrations ;
_c24 cm.
365 _bUSD180.91
504 _aIncludes index.
505 _aChapter1. Probability and stochastic processes -- Chapter2. Learning in parametric modeling: basic concepts and directions -- Chapter3. Mean-square error linear estimation -- Chapter4. Stochastic gradient descent: the LMS algorithm -- Chapter5. The least-squares family -- Chapter6. Classification: a tour of the classics -- Chapter7. Parameter learning: a convex analytic path -- Chapter8. Sparsity-aware learning: concepts and theoretical foundations -- Chapter9. Sparcity-aware learning: algorithms and applications -- Chapter10. Learning in reproducing Kernel Hilbert spaces -- Chapter11. Bayesian learning: inference and the EM algorithm -- Chapter12. Bayesian learning: approximate inference and nonparametric models -- Chapter13. Monte Carlo methods -- Chapter14. Probabilistic graphical models: Part I -- Chapter15. Probabilistic graphical models: Part II -- Chapter16. Particle filtering -- Chapter17. Neural networks and deep learning -- Chapter18. Dimensionality reduction and Latent Variables Modeling .
520 _aThis tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches--which are based on optimization techniques--together with the Bayesian inference approach, whose essence lies in the use of a hierarchy of probabilistic models.
650 _aMACHINE LEARNING
942 _2lcc
_cBK
999 _c16325
_d16325