TY - BOOK AU - Bejan, Adrian TI - Heat transfer SN - 471502901 AV - QA 320 .B44 1995 PY - 1993/// CY - New York PB - John Wiley & Son, Inc. KW - HEAT TRANSMISSION N1 - Includes bibliographical references and index; List of Symbols -- 1 Introduction (starting p. 1) -- 1.1 Fundamental Concepts (starting p. 1) -- 1.1.1 Heat Transfer -- 1.1.2 Temperature -- 1.1.3 Specific Heats -- 1.2 The Objective of Heat Transfer (starting p. 6) -- 1.3 Conduction (starting p. 7) -- 1.3.1 The Fourier Law -- 1.3.2 Thermal Conductivity -- 1.3.3 Cartesian Coordinates -- 1.3.4 Cylindrical Coordinates -- 1.3.5 Spherical Coordinates -- 1.3.6 Initial and Boundary Conditions -- 1.4 Convection (starting p. 21) -- 1.5 Radiation (starting p. 27) -- 2 Unidirectional Steady Conduction (starting p. 32) -- 2.1 Thin Walls (starting p. 32) -- 2.1.1 Thermal Resistance -- 2.1.2 Composite Walls -- 2.1.3 Overall Heat Transfer Coefficient -- 2.2 Cylindrical Shells (starting p. 38) -- 2.3 Spherical Shells (starting p. 41) -- 2.4 Critical Insulation Radius (starting p. 42) -- 2.5 Variable Thermal Conductivity (starting p. 45) -- 2.6 Internal Heat Generation (starting p. 47) -- 2.6.1 Uniform Heating -- 2.6.2 Temperature-Dependent Heating: The Integral Method -- 2.7 Extended Surfaces (Fins) (starting p. 52) -- 2.7.1 The Enhancement of Heat Transfer -- 2.7.2 Constant Cross-Sectional Area -- 2.7.3 Variable Cross-Sectional Area -- 2.7.4 When the Unidirectional Conduction Model is Valid -- 2.7.5 Optimization Subject to Volume Constraint -- 2.8 Extended Surfaces with Relative Motion and Internal Heat Generation (starting p. 69) -- 2.8.1 The General Conduction Equation -- 2.8.2 Plastics Extrusion and Wire Drawing -- 2.8.3 Electrical Cables -- 3 Multidirectional Steady Conduction (starting p. 91) -- 3.1 Analytical Solutions (starting p. 91) -- 3.1.1 Two-Dimensional Conduction in Cartesian Coordinates -- 3.1.2 Heat Flux Boundary Conditions -- 3.1.3 Superposition of Solutions -- 3.1.4 Cylindrical Coordinates -- 3.1.5 Three-Dimensional Conduction in Cartesian Coordinates -- 3.2 Approximate Methods (starting p. 109) -- 3.2.1 The Integral Method -- 3.2.2 The Method of Scale Analysis -- 3.2.3 The Graphic Method -- 3.3 Numerical Methods (starting p. 120) -- 3.3.1 Finite-Difference Conduction Equations -- 3.3.2 The Matrix Inversion Method -- 3.3.3 The Gauss-Seidel Iteration Method -- 4 Time-Dependent Conduction (starting p. 143) -- 4.1 The Immersion Cooling or Heating of a Conducting Body (starting p. 143) -- 4.2 The Lumped Capacitance Model (the "Late" Regime) (starting p. 146) -- 4.3 The Semi-infinite Solid Model (the "Early" Regime) (starting p. 148) -- 4.3.1 Constant Surface Temperature -- 4.3.2 Constant Heat Flux Surface -- 4.3.3 Surface in Contact with Fluid -- 4.4 Unidirectional Conduction (starting p. 156) -- 4.4.1 The Constant-Thickness Plate -- 4.4.2 The Long Cylinder -- 4.4.3 The Sphere -- 4.4.4 Plate, Cylinder, and Sphere with Fixed Surface Temperature -- 4.5 Multidirectional Conduction (starting p. 172) -- 4.6 Concentrated Sources and Sinks (starting p. 177) -- 4.6.1 Instantaneous (One-Shot) Sources and Sinks -- 4.6.2 Persistent (Continuous) Sources and Sinks -- 4.6.3 Moving Heat Sources -- 4.7 Melting and Solidification (starting p. 184) -- 4.8 Numerical Methods (starting p. 190) -- 4.8.1 Discretization in Time and Space -- 4.8.2 The Explicit Method -- 4.8.3 The Implicit Method -- 5 External Forced Convection (starting p. 216) -- 5.1 Classification of Convection Configurations (starting p. 216) -- 5.2 Basic Principles of Convection (starting p. 219) -- 5.2.1 The Mass Conservation Equation -- 5.2.2 The Momentum Equations -- 5.2.3 The Energy Equation -- 5.3 Laminar Boundary Layer Over a Plane Wall (starting p. 231) -- 5.3.1 The Velocity Boundary Layer -- 5.3.2 The Thermal Boundary Layer (Isothermal Wall) -- 5.3.3 Nonisothermal Wall Conditions -- 5.3.4 Film Temperature -- 5.4 Turbulent Boundary Layer over a Plane Wall (starting p. 248) -- 5.4.1 Transition from Laminar to Turbulent Flow -- 5.4.2 Time-Averaged Equations -- 5.4.3 Eddy Diffusivities -- 5.4.4 Wall Friction -- 5.4.5 Heat Transfer -- 5.5 Other External Flows (starting p. 263) -- 5.5.1 Single Cylinder in Cross-Flow -- 5.5.2 Sphere -- 5.5.3 Other Body Shapes -- 5.5.4 Arrays of Cylinders in Cross-Flow -- 5.5.5 Turbulent Jets -- 6 Internal Forced Convection (starting p. 290) -- 6.1 Laminar Flow Through a Duct (starting p. 290) -- 6.1.1 The Flow Entrance Region -- 6.1.2 The Fully Developed Flow Region -- 6.1.3 Friction Factor and Pressure Drop -- 6.2 Heat Transfer in Laminar Flow (starting p. 299) -- 6.2.1 The Thermal Entrance Region -- 6.2.2 The Thermally Fully Developed Region -- 6.2.3 Uniform Wall Heat Flux -- 6.2.4 Isothermal Wall -- 6.3 Turbulent Flow (starting p. 309) -- 6.3.1 Transition, Entrance Region, and Fully Developed Flow -- 6.3.2 Friction Factor and Pressure Drop -- 6.3.3 Heat Transfer Coefficient -- 6.4 The Total Heat Transfer Rate (starting p. 318) -- 7 Natural Convection (starting p. 335) -- 7.1 What Drives the Natural Convection Flow? (starting p. 335) -- 7.2 Boundary Layer Flow Along a Vertical Wall (starting p. 336) -- 7.2.1 The Boundary Layer-Simplified Equations -- 7.2.2 Scale Analysis of the Laminar Regime -- 7.2.3 Isothermal Wall (Laminar Flow) -- 7.2.4 Transition and the Effect of Turbulence on Heat Transfer -- 7.2.5 Uniform Wall Heat Flux -- 7.3 Other External Flow Configurations (starting p. 354) -- 7.3.1 Thermally Stratified Fluid Reservoir -- 7.3.2 Inclined Walls -- 7.3.3 Horizontal Walls -- 7.3.4 Horizontal Cylinder -- 7.3.5 Sphere -- 7.3.6 Vertical Cylinder -- 7.3.7 Other Immersed Bodies -- 7.4 Internal Flow Configurations (starting p. 365) -- 7.4.1 Vertical Channels -- 7.4.2 Enclosures Heated from the Side -- 7.4.3 Enclosures Heated from Below -- 7.4.4 Inclined Enclosures -- 7.4.5 Annular Space Between Horizontal Cylinders -- 7.4.6 Annular Space Between Concentric Spheres -- 8 Convection with Change of Phase (starting p. 398) -- 8.1 Condensation Heat Transfer (starting p. 398) -- 8.1.1 Laminar Film on a Vertical Surface -- 8.1.2 Turbulent Film on a Vertical Surface -- 8.1.3 Film Condensation in Other Configurations -- 8.1.4 Dropwise and Direct-Contact Condensation -- 8.2 Boiling Heat Transfer (starting p. 419) -- 8.2.1 Pool Boiling Regimes -- 8.2.2 Nucleate Boiling and Peak Heat Flux -- 8.2.3 Film Boiling and Minimum Heat Flux -- 8.2.4 Flow Boiling -- 9 Heat Exchangers (starting p. 444) -- 9.1 Classification of Heat Exchangers (starting p. 444) -- 9.2 Overall Heat Transfer Coefficient (starting p. 452) -- 9.3 The Log-Mean Temperature Difference Method (starting p. 458) -- 9.3.1 Parallel Flow -- 9.3.2 Counterflow -- 9.3.3 Other Flow Arrangements -- 9.4 The Effectiveness -- NTU Method (starting p. 468) -- 9.4.1 Effectiveness and Limitations Posed by the Second Law -- 9.4.2 Parallel Flow -- 9.4.3 Counterflow -- 9.4.4 Other Flow Arrangements -- 9.5 Pressure Drop (starting p. 479) -- 9.5.1 Pumping Power -- 9.5.2 Abrupt Contraction and Enlargement -- 9.5.3 Acceleration and Deceleration -- 9.5.4 Tube Bundles in Cross-Flow -- 9.5.5 Compact Heat Exchanger Surfaces -- 10 Radiation (starting p. 505) -- 10.1 Introduction (starting p. 505) -- 10.2 Blackbody Radiation (starting p. 506) -- 10.2.1 Definitions -- 10.2.2 Temperature and Energy -- 10.2.3 Intensity -- 10.2.4 Emissive Power -- 10.3 Heat Transfer Between Black Surfaces (starting p. 519) -- 10.3.1 The Geometric View Factor -- 10.3.2 Relations Between View Factors -- 10.3.3 Two-Surface Enclosures -- 10.4 Diffuse-Gray Surfaces (starting p. 530) -- 10.4.1 Emissivity -- 10.4.2 Absorptivity and Reflectivity -- 10.4.3 Kirchhoff's Law -- 10.4.4 Two-Surface Enclosures -- 10.4.5 Enclosures with More Than Two Surfaces -- 10.5 Participating Media (starting p. 551) -- 10.5.1 Volumetric Absorption -- 10.5.2 Gas Emissivities and Absorptivities -- 10.5.3 Gas Surrounded by Black Surface -- 10.5.4 Gray Medium Surrounded by Diffuse-Gray Surfaces -- 11 Mass Transfer Principles (starting p. 576) -- 11.1 The Analogy Between Mass Transfer and Heat Transfer (starting p. 576) -- 11.2 The Conservation of Chemical Species (starting p. 578) -- 11.2.1 Species Velocity Versus Bulk Velocity -- 11.2.2 Diffusion Mass Flux -- 11.2.3 Fick's Law -- 11.2.4 Molar Concentration and Molar Flux -- 11.3 Diffusion Through a Stationary Medium (starting p. 584) -- 11.3.1 Steady Diffusion -- 11.3.2 Mass Diffusivities -- 11.3.3 Boundary Conditions -- 11.3.4 Time-Dependent Diffusion -- 11.4 Convection (starting p.; 597) -- 11.4.1 Forced Convection in Laminar Boundary Layer Flow -- 11.4.2 The Impermeable Surface Model -- 11.4.3 Other External Forced-Convection Configurations -- 11.4.4 Internal Forced Convection -- 11.4.5 Natural Convection -- App. A: Constants and Conversion Factors (starting p. 618) -- App. B: Properties of Solids (starting p. 623) -- App. C: Properties of Liquids (starting p. 637) -- App. D: Properties of Gases (starting p. 645) -- App. E: Mathematical Formulas (starting p. 652) -- App. F: Local Reynolds Number Transition Criterion (starting p. 658) -- Author Index (starting p. 665) -- Subject Index (starting p. 671) N2 - Emphasizing an interdisciplinary approach to thermal engineering which attempts to accurately reflect practice and problems in the field, this textbook integrates key industrial applications into three traditional content areas: conduction, convection and radiation ER -