Deep reinforcement learning /
Aske Plaat
- Singapore : Springer, c2022
- xv, 406 pages : color illustrations ; 24 cm.
Includes index.
1. Introduction -- 2. Tabular Value-Based Methods -- 3. Approximating the Value Function -- 4. Policy-Based Methods -- 5. Model-Based Methods -- 6. Two-Agent Reinforcement Learning -- 7. Multi-Agent Reinforcement Learning -- 8. Hierarchical Reinforcement Learning -- 9. Meta Learning -- 10. Further Developments -- A. Deep Reinforcement Learning Suites -- B. Deep Learning -- C. Mathematical Background.
Deep reinforcement learning has attracted considerable attention recently. Impressive results have been achieved in such diverse fields as autonomous driving, game playing, molecular recombination, and robotics. In all these fields, computer programs have taught themselves to understand problems that were previously considered to be very difficult. In the game of Go, the program AlphaGo has even learned to outmatch three of the worlds leading players. Deep reinforcement learning takes its inspiration from the fields of biology and psychology.