Foundation and anchor design guide for metal building systems / Alexander Newman
Material type:
- 9780071766357
- TA 684 .N49 2013

Item type | Current library | Home library | Collection | Call number | Copy number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|---|
![]() |
National University - Manila | LRC - Main General Circulation | General Education | GC TA 684 .N49 2013 c.1 (Browse shelf(Opens below)) | c.1 | Available | NULIB000007096 | ||
![]() |
National University - Manila | LRC - Main General Circulation | Civil Engineering | GC TA 684 .N49 2013 c.2 (Browse shelf(Opens below)) | c.2 | Available | NULIB000013539 |
Browsing LRC - Main shelves, Shelving location: General Circulation, Collection: Civil Engineering Close shelf browser (Hides shelf browser)
No cover image available |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
GC TA 684 .B69 1980 Structural steel design / | GC TA 684 .G47 2012 Unified design of steel structures / | GC TA 684 .L43 2013 Steel bridges : conceptual and structural design of steel and steel-concrete composite bridges / | GC TA 684 .N49 2013 c.2 Foundation and anchor design guide for metal building systems / | GC TA 684 .R53 2011 Build with steel : a companion to the AISC manual / | GC TA 684 .R65 2015 Steel design for the Civil PE and structural SE exams / | GC TA 684 .S25 2009 Steel structures : design and behavior : emphasizing load and resistance factor design / |
Includes index.
1. Introduction to Metal Building Systems -- 1.1. Two Main Classes of Metal Building Systems -- 1.2. Frame-and-Purlin Buildings: Primary and Secondary Framing -- 1.2.1. Primary Frames: Usage and Terminology -- 1.2.2. Single-Span Rigid Frames -- 1.2.3. Multiple-Span Rigid Frames -- 1.2.4. Tapered Beam -- 1.2.5. Trusses -- 1.2.6. Other Primary Framing Systems -- 1.2.7. Endwall and Sidewall Framing -- 1.3. Frame-and-Purlin Buildings: Lateral-Force-Resisting Systems -- 1.4. Quonset Hut-Type Buildings -- References -- 2. Foundation Design Basics -- 2.1. Soil Types and Properties -- 2.1.1. Introduction -- 2.1.2. Some Relevant Soil Properties -- 2.1.3. Soil Classification -- 2.1.4. Characteristics of Coarse-Grained Soils -- 2.1.5. Characteristics of Fine-Grained Soils -- 2.1.6. The Atterberg Limits -- 2.1.7. Soil Mixtures -- 2.1.8. Structural Fill -- 2.1.9. Rock -- 2.2. Problem Soils -- 2.2.1. Expansive Soils: The Main Issues -- 2.2.2. Measuring Expansive Potential of Soil -- 2.2.3.Organics -- 2.2.4. Collapsing Soils and Karst -- 2.3. Soil Investigation -- 2.3.1. Types of Investigation -- 2.3.2. Preliminary Exploration -- 2.3.3. Detailed Exploration: Soil Borings and Other Methods -- 2.3.4. Laboratory Testing -- 2.4. Settlement and Heave Issues -- 2.4.1. What Causes Settlement? -- 2.4.2. Settlement in Sands and Gravels -- 2.4.3. Settlement in Silts and Clays -- 2.4.4. Differential Settlement -- 2.4.5. Some Criteria for Tolerable Differential Settlement -- 2.5. Determination of Allowable Bearing Value -- 2.5.1. Why Not Simply Use the Code Tables? -- 2.5.2. Special Provisions for Seismic Areas -- 2.5.3. What Constitutes a Foundation Failure? -- 2.5.4. Summary -- 2.6. Shallow vs. Deep Foundations -- References -- 3. Foundations for Metal Building Systems: The Main Issues -- 3.1. The Differences between Foundations for Conventional Buildings and Metal Building Systems -- 3.1.1. Light Weight Means Large Net Uplift -- 3.1.2. Large Lateral Reactions -- 3.1.3. Factors of Safety and One-Third Stress Increase -- 3.1.4. In Some Circumstances, Uncertainty of Reactions -- 3.2. Estimating Column Reactions -- 3.2.1. Methods of Estimating Reactions -- 3.2.2. How Accurate Are the Estimates? -- 3.3. Effects of Column Fixity on Foundations -- 3.3.1. Is There a Cost Advantage? -- 3.3.2. Feasibility of Fixed-Base Columns in MBS -- 3.3.3.Communication Breakdown -- 3.4. General Procedure for Foundation Design -- 3.4.1. Assign Responsibilities -- 3.4.2. Collect Design Information -- 3.4.3. Research Relevant Code Provisions and Determine Reactions -- 3.4.4. Determine Controlling Load Combinations -- 3.4.5. Choose Shallow or Deep Foundations -- 3.4.6. Establish Minimum Foundation Depth -- 3.4.7. Design the Foundation -- 3.5. Reliability, Versatility, and Cost -- 3.5.1. Definitions -- 3.5.2. Some Examples -- 3.6. Column Pedestals (Piers) -- 3.6.1. The Area Inviting Controversy -- 3.6.2. Two Methods of Supporting Steel Columns in Shallow Foundations -- 3.6.3. Establishing Sizes of Column Pedestals (Piers) -- 3.6.4. Minimum Reinforcement of Piers -- References -- 4. Design of Isolated Column Footings -- 4.1. The Basics of Footing Design and Construction -- 4.1.1. Basic Design Requirements -- 4.1.2. Construction Requirements -- 4.1.3. Seismic Ties -- 4.1.4. Reinforced-Concrete Footings -- 4.1.5. Plain-Concrete and Other Footings -- 4.1.6. Nominal vs. Factored Loading -- 4.2. The Design Process -- 4.2.1. General Design Procedure -- 4.2.2. Using ASD Load Combinations -- 4.2.3. Using Load Combinations for Strength Design -- 4.2.4. What Is Included in the Dead Load? -- 4.2.5. Designing for Moment -- 4.2.6. Designing for Shear -- 4.2.7. Minimum Footing Reinforcement -- 4.2.8. Distribution of Reinforcement Rectangular Footings -- 4.2.9. Designing for Uplift -- 4.2.10. Reinforcement at Top of Footings -- References -- 5. Foundation Walls and Wall Footings -- 5.1. The Basics of Design and Construction -- 5.1.1. Foundation Options for Support of Exterior Walls -- 5.1.2. Design and Construction Requirements for Foundation Walls -- 5.1.3. Construction of Wall Footings -- 5.1.4. Design of Wall Footings -- References -- 6. Tie Rods, Hairpins, and Slab Ties -- 6.1. Tie Rods -- 6.1.1. The Main Issues -- 6.1.2. Some Basic Tie-Rod Systems -- 6.1.3.A Reliable Tie-Rod Design -- 6.1.4. Development of Tie Rods by Standard Hooks -- 6.1.5. Design of Tie Rods Considering Elastic Elongation -- 6.1.6. Post-Tensioned Tie Rods -- 6.1.7. Tie-Rod Grid -- 6.1.8. Which Tie-Rod Design Is Best? -- 6.2. Hairpins and Slab Ties -- 6.2.1. Hairpins: The Essence of the System -- 6.2.2. Hairpins in Slabs on Grade -- 6.2.3. Hairpins: The Design Process -- 6.2.4. Development of Straight Bars in Slabs -- 6.2.5. Slab Ties (Dowels) -- 6.2.6. Using Foundation Seats -- References -- 7. Moment-Resisting Foundations -- 7.1. The Basic Concept -- 7.1.1.A Close Relative: Cantilevered Retaining Wall -- 7.1.2. Advantages and Disadvantages -- 7.2. Active, Passive, and At-Rest Soil Pressures -- 7.2.1. The Nature of Active, Passive, and At-Rest Pressures -- 7.2.2. How to Compute Active, Passive, and At-Rest Pressure -- 7.2.3. Typical Values of Active, Passive, and At-Rest Coefficients -- 7.3. Lateral Sliding Resistance -- 7.3.1. The Nature of Lateral Sliding Resistance -- 7.3.2.Combining Lateral Sliding Resistance and Passive Pressure Resistance -- 7.4. Factors of Safety against Overturning and Sliding -- 7.4.1. No Explicit Factors of Safety in IBC Load Combinations -- 7.4.2. Explicit Factors of Safety for Retaining Walls -- 7.4.3. How to Increase Lateral Sliding Resistance -- 7.5. The Design Procedures -- 7.5.1. Design Input -- 7.5.2. Design Using Combined Stresses Acting on Soil -- 7.5.3. The Pressure Wedge Method -- 7.5.4. General Design Process -- 7.5.5. Moment-Resisting Foundations in Combination with Slab Dowels -- References -- 8. Slab with Haunch, Trench Footings, and Mats -- 8.1. Slab with Haunch -- 8.1.1. General Issues -- 8.1.2. The Role of Girt Inset -- 8.1.3. Resisting the Column Reactions -- 8.2. Trench Footings -- 8.3. Mats -- 8.3.1.Common Uses -- 8.3.2. The Basics of Design -- 8.3.3. Typical Construction in Cold Climates -- 8.3.4. Using Anchor Bolts in Mats -- References -- 9. Deep Foundations -- 9.1. Introduction -- 9.2. Deep Piers -- 9.2.1. The Basics of Design and Construction -- 9.2.2. Resisting Uplift and Lateral Column Reactions with Deep Piers -- 9.3. Piles -- 9.3.1. The Basic Options -- 9.3.2. The Minimum Number of Piles -- 9.3.3. Using Structural Slab in Combination with Deep Foundations -- 9.3.4. Resisting Uplift with Piles -- 9.3.5. Resisting Lateral Column Reactions with Piles -- References -- 10. Anchors in Metal Building Systems -- 10.1. General Issues -- 10.1.1. Terminology and Purpose -- 10.1.2. The Minimum Number of Anchor Bolts -- 10.2. Anchor Bolts: Construction and Installation -- 10.2.1. Typical Construction -- 10.2.2. Field Installation -- 10.2.3. Placement Tolerances vs. Oversized Holes in Column Base Plates -- 10.2.4. Using Anchor Bolts for Column Leveling -- 10.2.5. Should Anchor Bolts Be Used to Transfer Horizontal Column Reactions? -- 10.3. Design of Anchor Bolts: General Provisions -- 10.3.1. Provisions of the International Building Code -- 10.3.2. ACI318-08 Appendix D -- 10.4. Design of Anchor Bolts for Tension per ACI 318-08 Appendix D -- 10.4.1. Tensile Strength of Anchor Bolt vs. Tensile Strength of Concrete for a Single Anchor -- 10.4.2. Tensile Strength of an Anchor Group -- 10.4.3. Tensile Strength of Steel Anchors -- 10.4.4. Pullout Strength of Anchor in Tension -- 10.4.5. Concrete Side-Face Blowout Strength of Headed Anchors in Tension -- 10.4.6. Concrete Breakout Strength of Anchors in Tension -- 10.4.7. Using Anchor Reinforcement for Tension -- 10.5. Design of Anchors for Shear per ACI 318-08 Appendix D -- 10.5.1. Introduction -- 10.5.2. Steel Strength of Anchors in Shear -- 10.5.3. Concrete Breakout Strength in Shear: General -- 10.5.4. Basic Concrete Breakout Strength in Shear Vb -- 10.5.5. Concrete Breakout Strength in Shear for Anchors Close to Edge on Three or More Sides -- 10.5.6. Concrete Breakout Strength in Shear: Modification Factors -- 10.5.7. Using Anchor Reinforcement for Concrete Breakout Strength in Shear -- 10.5.8. Using a Combination of Edge Reinforcement and Anchor Reinforcement for Concrete Breakout Strength in Shear -- 10.5.9. Concrete Pryout Strength in Shear -- 10.5.10.Combined Tension and Shear -- 10.5.11.
Minimum Edge Distances and Spacing of Anchors -- 10.5.12. Concluding Remarks -- References -- 11. Concrete Embedments in Metal Building Systems -- 11.1. The Role of Concrete Embedments -- 11.1.1. Prior Practices vs. Today's Code Requirements -- 11.1.2. Two Options for Resisting High Horizontal Column Reactions -- 11.1.3. Transfer of Uplift Forces to Foundations: No Alternative to Anchor Bolts? -- 11.2. Using Anchor Bolts to Transfer Horizontal Column Reactions to Foundations -- 11.2.1. Some Problems with Shear Resistance of Anchor Bolts -- 11.2.2. Possible Solutions to Enable Resistance of Anchor Bolts to Horizontal Forces -- 11.2.3. Design of Anchor Bolts for Bending -- 11.3. Concrete Embedments for the Transfer of Horizontal Column Reactions to Foundations: An Overview -- 11.4. Shear Lugs and the Newman Lug -- 11.4.1. Construction of Shear Lugs -- 11.4.2. Minimum Anchor Bolt Spacing and Column Sizes Used with Shear Lugs -- 11.4.3. Design of Shear Lugs: General Procedure -- 11.4.4. Determination of Bearing Strength -- 11.4.5. Determination of Concrete Shear Strength -- 11.4.6. The Newman Lug -- 11.5. Recessed Column Base -- 11.5.1. Construction -- 11.5.2. Design -- 11.6. Other Embedments -- 11.6.1. Cap Plate -- 11.6.2. Embedded Plate with Welded-On Studs -- References.
This practical guide serves as the industry standard for foundation design of metal building systems.
There are no comments on this title.