Heat transfer / Adrian Bejan.

By: Material type: TextTextPublication details: New York : John Wiley & Son, Inc., c1993Description: xxiii, 675 pages : illustrations ; 26 cmISBN:
  • 471502901
Subject(s): LOC classification:
  • QA 320 .B44 1995
Contents:
List of Symbols -- 1 Introduction (starting p. 1) -- 1.1 Fundamental Concepts (starting p. 1) -- 1.1.1 Heat Transfer -- 1.1.2 Temperature -- 1.1.3 Specific Heats -- 1.2 The Objective of Heat Transfer (starting p. 6) -- 1.3 Conduction (starting p. 7) -- 1.3.1 The Fourier Law -- 1.3.2 Thermal Conductivity -- 1.3.3 Cartesian Coordinates -- 1.3.4 Cylindrical Coordinates -- 1.3.5 Spherical Coordinates -- 1.3.6 Initial and Boundary Conditions -- 1.4 Convection (starting p. 21) -- 1.5 Radiation (starting p. 27) -- 2 Unidirectional Steady Conduction (starting p. 32) -- 2.1 Thin Walls (starting p. 32) -- 2.1.1 Thermal Resistance -- 2.1.2 Composite Walls -- 2.1.3 Overall Heat Transfer Coefficient -- 2.2 Cylindrical Shells (starting p. 38) -- 2.3 Spherical Shells (starting p. 41) -- 2.4 Critical Insulation Radius (starting p. 42) -- 2.5 Variable Thermal Conductivity (starting p. 45) -- 2.6 Internal Heat Generation (starting p. 47) -- 2.6.1 Uniform Heating -- 2.6.2 Temperature-Dependent Heating: The Integral Method -- 2.7 Extended Surfaces (Fins) (starting p. 52) -- 2.7.1 The Enhancement of Heat Transfer -- 2.7.2 Constant Cross-Sectional Area -- 2.7.3 Variable Cross-Sectional Area -- 2.7.4 When the Unidirectional Conduction Model is Valid -- 2.7.5 Optimization Subject to Volume Constraint -- 2.8 Extended Surfaces with Relative Motion and Internal Heat Generation (starting p. 69) -- 2.8.1 The General Conduction Equation -- 2.8.2 Plastics Extrusion and Wire Drawing -- 2.8.3 Electrical Cables -- 3 Multidirectional Steady Conduction (starting p. 91) -- 3.1 Analytical Solutions (starting p. 91) -- 3.1.1 Two-Dimensional Conduction in Cartesian Coordinates -- 3.1.2 Heat Flux Boundary Conditions -- 3.1.3 Superposition of Solutions -- 3.1.4 Cylindrical Coordinates -- 3.1.5 Three-Dimensional Conduction in Cartesian Coordinates -- 3.2 Approximate Methods (starting p. 109) -- 3.2.1 The Integral Method -- 3.2.2 The Method of Scale Analysis -- 3.2.3 The Graphic Method -- 3.3 Numerical Methods (starting p. 120) -- 3.3.1 Finite-Difference Conduction Equations -- 3.3.2 The Matrix Inversion Method -- 3.3.3 The Gauss-Seidel Iteration Method -- 4 Time-Dependent Conduction (starting p. 143) -- 4.1 The Immersion Cooling or Heating of a Conducting Body (starting p. 143) -- 4.2 The Lumped Capacitance Model (the "Late" Regime) (starting p. 146) -- 4.3 The Semi-infinite Solid Model (the "Early" Regime) (starting p. 148) -- 4.3.1 Constant Surface Temperature -- 4.3.2 Constant Heat Flux Surface -- 4.3.3 Surface in Contact with Fluid -- 4.4 Unidirectional Conduction (starting p. 156) -- 4.4.1 The Constant-Thickness Plate -- 4.4.2 The Long Cylinder -- 4.4.3 The Sphere -- 4.4.4 Plate, Cylinder, and Sphere with Fixed Surface Temperature -- 4.5 Multidirectional Conduction (starting p. 172) -- 4.6 Concentrated Sources and Sinks (starting p. 177) -- 4.6.1 Instantaneous (One-Shot) Sources and Sinks -- 4.6.2 Persistent (Continuous) Sources and Sinks -- 4.6.3 Moving Heat Sources -- 4.7 Melting and Solidification (starting p. 184) -- 4.8 Numerical Methods (starting p. 190) -- 4.8.1 Discretization in Time and Space -- 4.8.2 The Explicit Method -- 4.8.3 The Implicit Method -- 5 External Forced Convection (starting p. 216) -- 5.1 Classification of Convection Configurations (starting p. 216) -- 5.2 Basic Principles of Convection (starting p. 219) -- 5.2.1 The Mass Conservation Equation -- 5.2.2 The Momentum Equations -- 5.2.3 The Energy Equation -- 5.3 Laminar Boundary Layer Over a Plane Wall (starting p. 231) -- 5.3.1 The Velocity Boundary Layer -- 5.3.2 The Thermal Boundary Layer (Isothermal Wall) -- 5.3.3 Nonisothermal Wall Conditions -- 5.3.4 Film Temperature -- 5.4 Turbulent Boundary Layer over a Plane Wall (starting p. 248) -- 5.4.1 Transition from Laminar to Turbulent Flow -- 5.4.2 Time-Averaged Equations -- 5.4.3 Eddy Diffusivities -- 5.4.4 Wall Friction -- 5.4.5 Heat Transfer -- 5.5 Other External Flows (starting p. 263) -- 5.5.1 Single Cylinder in Cross-Flow -- 5.5.2 Sphere -- 5.5.3 Other Body Shapes -- 5.5.4 Arrays of Cylinders in Cross-Flow -- 5.5.5 Turbulent Jets -- 6 Internal Forced Convection (starting p. 290) -- 6.1 Laminar Flow Through a Duct (starting p. 290) -- 6.1.1 The Flow Entrance Region -- 6.1.2 The Fully Developed Flow Region -- 6.1.3 Friction Factor and Pressure Drop -- 6.2 Heat Transfer in Laminar Flow (starting p. 299) -- 6.2.1 The Thermal Entrance Region -- 6.2.2 The Thermally Fully Developed Region -- 6.2.3 Uniform Wall Heat Flux -- 6.2.4 Isothermal Wall -- 6.3 Turbulent Flow (starting p. 309) -- 6.3.1 Transition, Entrance Region, and Fully Developed Flow -- 6.3.2 Friction Factor and Pressure Drop -- 6.3.3 Heat Transfer Coefficient -- 6.4 The Total Heat Transfer Rate (starting p. 318) -- 7 Natural Convection (starting p. 335) -- 7.1 What Drives the Natural Convection Flow? (starting p. 335) -- 7.2 Boundary Layer Flow Along a Vertical Wall (starting p. 336) -- 7.2.1 The Boundary Layer-Simplified Equations -- 7.2.2 Scale Analysis of the Laminar Regime -- 7.2.3 Isothermal Wall (Laminar Flow) -- 7.2.4 Transition and the Effect of Turbulence on Heat Transfer -- 7.2.5 Uniform Wall Heat Flux -- 7.3 Other External Flow Configurations (starting p. 354) -- 7.3.1 Thermally Stratified Fluid Reservoir -- 7.3.2 Inclined Walls -- 7.3.3 Horizontal Walls -- 7.3.4 Horizontal Cylinder -- 7.3.5 Sphere -- 7.3.6 Vertical Cylinder -- 7.3.7 Other Immersed Bodies -- 7.4 Internal Flow Configurations (starting p. 365) -- 7.4.1 Vertical Channels -- 7.4.2 Enclosures Heated from the Side -- 7.4.3 Enclosures Heated from Below -- 7.4.4 Inclined Enclosures -- 7.4.5 Annular Space Between Horizontal Cylinders -- 7.4.6 Annular Space Between Concentric Spheres -- 8 Convection with Change of Phase (starting p. 398) -- 8.1 Condensation Heat Transfer (starting p. 398) -- 8.1.1 Laminar Film on a Vertical Surface -- 8.1.2 Turbulent Film on a Vertical Surface -- 8.1.3 Film Condensation in Other Configurations -- 8.1.4 Dropwise and Direct-Contact Condensation -- 8.2 Boiling Heat Transfer (starting p. 419) -- 8.2.1 Pool Boiling Regimes -- 8.2.2 Nucleate Boiling and Peak Heat Flux -- 8.2.3 Film Boiling and Minimum Heat Flux -- 8.2.4 Flow Boiling -- 9 Heat Exchangers (starting p. 444) -- 9.1 Classification of Heat Exchangers (starting p. 444) -- 9.2 Overall Heat Transfer Coefficient (starting p. 452) -- 9.3 The Log-Mean Temperature Difference Method (starting p. 458) -- 9.3.1 Parallel Flow -- 9.3.2 Counterflow -- 9.3.3 Other Flow Arrangements -- 9.4 The Effectiveness -- NTU Method (starting p. 468) -- 9.4.1 Effectiveness and Limitations Posed by the Second Law -- 9.4.2 Parallel Flow -- 9.4.3 Counterflow -- 9.4.4 Other Flow Arrangements -- 9.5 Pressure Drop (starting p. 479) -- 9.5.1 Pumping Power -- 9.5.2 Abrupt Contraction and Enlargement -- 9.5.3 Acceleration and Deceleration -- 9.5.4 Tube Bundles in Cross-Flow -- 9.5.5 Compact Heat Exchanger Surfaces -- 10 Radiation (starting p. 505) -- 10.1 Introduction (starting p. 505) -- 10.2 Blackbody Radiation (starting p. 506) -- 10.2.1 Definitions -- 10.2.2 Temperature and Energy -- 10.2.3 Intensity -- 10.2.4 Emissive Power -- 10.3 Heat Transfer Between Black Surfaces (starting p. 519) -- 10.3.1 The Geometric View Factor -- 10.3.2 Relations Between View Factors -- 10.3.3 Two-Surface Enclosures -- 10.4 Diffuse-Gray Surfaces (starting p. 530) -- 10.4.1 Emissivity -- 10.4.2 Absorptivity and Reflectivity -- 10.4.3 Kirchhoff's Law -- 10.4.4 Two-Surface Enclosures -- 10.4.5 Enclosures with More Than Two Surfaces -- 10.5 Participating Media (starting p. 551) -- 10.5.1 Volumetric Absorption -- 10.5.2 Gas Emissivities and Absorptivities -- 10.5.3 Gas Surrounded by Black Surface -- 10.5.4 Gray Medium Surrounded by Diffuse-Gray Surfaces -- 11 Mass Transfer Principles (starting p. 576) -- 11.1 The Analogy Between Mass Transfer and Heat Transfer (starting p. 576) -- 11.2 The Conservation of Chemical Species (starting p. 578) -- 11.2.1 Species Velocity Versus Bulk Velocity -- 11.2.2 Diffusion Mass Flux -- 11.2.3 Fick's Law -- 11.2.4 Molar Concentration and Molar Flux -- 11.3 Diffusion Through a Stationary Medium (starting p. 584) -- 11.3.1 Steady Diffusion -- 11.3.2 Mass Diffusivities -- 11.3.3 Boundary Conditions -- 11.3.4 Time-Dependent Diffusion -- 11.4 Convection (starting p.
597) -- 11.4.1 Forced Convection in Laminar Boundary Layer Flow -- 11.4.2 The Impermeable Surface Model -- 11.4.3 Other External Forced-Convection Configurations -- 11.4.4 Internal Forced Convection -- 11.4.5 Natural Convection -- App. A: Constants and Conversion Factors (starting p. 618) -- App. B: Properties of Solids (starting p. 623) -- App. C: Properties of Liquids (starting p. 637) -- App. D: Properties of Gases (starting p. 645) -- App. E: Mathematical Formulas (starting p. 652) -- App. F: Local Reynolds Number Transition Criterion (starting p. 658) -- Author Index (starting p. 665) -- Subject Index (starting p. 671)
Summary: Emphasizing an interdisciplinary approach to thermal engineering which attempts to accurately reflect practice and problems in the field, this textbook integrates key industrial applications into three traditional content areas: conduction, convection and radiation.
Item type: Books
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Collection Call number Copy number Status Date due Barcode
Books Books National University - Manila LRC - Main General Circulation Gen. Ed. - COE GC QA 320 .B44 1995 (Browse shelf(Opens below)) c.1 Available NULIB000006278

Includes bibliographical references and index.

List of Symbols -- 1 Introduction (starting p. 1) -- 1.1 Fundamental Concepts (starting p. 1) -- 1.1.1 Heat Transfer -- 1.1.2 Temperature -- 1.1.3 Specific Heats -- 1.2 The Objective of Heat Transfer (starting p. 6) -- 1.3 Conduction (starting p. 7) -- 1.3.1 The Fourier Law -- 1.3.2 Thermal Conductivity -- 1.3.3 Cartesian Coordinates -- 1.3.4 Cylindrical Coordinates -- 1.3.5 Spherical Coordinates -- 1.3.6 Initial and Boundary Conditions -- 1.4 Convection (starting p. 21) -- 1.5 Radiation (starting p. 27) -- 2 Unidirectional Steady Conduction (starting p. 32) -- 2.1 Thin Walls (starting p. 32) -- 2.1.1 Thermal Resistance -- 2.1.2 Composite Walls -- 2.1.3 Overall Heat Transfer Coefficient -- 2.2 Cylindrical Shells (starting p. 38) -- 2.3 Spherical Shells (starting p. 41) -- 2.4 Critical Insulation Radius (starting p. 42) -- 2.5 Variable Thermal Conductivity (starting p. 45) -- 2.6 Internal Heat Generation (starting p. 47) -- 2.6.1 Uniform Heating -- 2.6.2 Temperature-Dependent Heating: The Integral Method -- 2.7 Extended Surfaces (Fins) (starting p. 52) -- 2.7.1 The Enhancement of Heat Transfer -- 2.7.2 Constant Cross-Sectional Area -- 2.7.3 Variable Cross-Sectional Area -- 2.7.4 When the Unidirectional Conduction Model is Valid -- 2.7.5 Optimization Subject to Volume Constraint -- 2.8 Extended Surfaces with Relative Motion and Internal Heat Generation (starting p. 69) -- 2.8.1 The General Conduction Equation -- 2.8.2 Plastics Extrusion and Wire Drawing -- 2.8.3 Electrical Cables -- 3 Multidirectional Steady Conduction (starting p. 91) -- 3.1 Analytical Solutions (starting p. 91) -- 3.1.1 Two-Dimensional Conduction in Cartesian Coordinates -- 3.1.2 Heat Flux Boundary Conditions -- 3.1.3 Superposition of Solutions -- 3.1.4 Cylindrical Coordinates -- 3.1.5 Three-Dimensional Conduction in Cartesian Coordinates -- 3.2 Approximate Methods (starting p. 109) -- 3.2.1 The Integral Method -- 3.2.2 The Method of Scale Analysis -- 3.2.3 The Graphic Method -- 3.3 Numerical Methods (starting p. 120) -- 3.3.1 Finite-Difference Conduction Equations -- 3.3.2 The Matrix Inversion Method -- 3.3.3 The Gauss-Seidel Iteration Method -- 4 Time-Dependent Conduction (starting p. 143) -- 4.1 The Immersion Cooling or Heating of a Conducting Body (starting p. 143) -- 4.2 The Lumped Capacitance Model (the "Late" Regime) (starting p. 146) -- 4.3 The Semi-infinite Solid Model (the "Early" Regime) (starting p. 148) -- 4.3.1 Constant Surface Temperature -- 4.3.2 Constant Heat Flux Surface -- 4.3.3 Surface in Contact with Fluid -- 4.4 Unidirectional Conduction (starting p. 156) -- 4.4.1 The Constant-Thickness Plate -- 4.4.2 The Long Cylinder -- 4.4.3 The Sphere -- 4.4.4 Plate, Cylinder, and Sphere with Fixed Surface Temperature -- 4.5 Multidirectional Conduction (starting p. 172) -- 4.6 Concentrated Sources and Sinks (starting p. 177) -- 4.6.1 Instantaneous (One-Shot) Sources and Sinks -- 4.6.2 Persistent (Continuous) Sources and Sinks -- 4.6.3 Moving Heat Sources -- 4.7 Melting and Solidification (starting p. 184) -- 4.8 Numerical Methods (starting p. 190) -- 4.8.1 Discretization in Time and Space -- 4.8.2 The Explicit Method -- 4.8.3 The Implicit Method -- 5 External Forced Convection (starting p. 216) -- 5.1 Classification of Convection Configurations (starting p. 216) -- 5.2 Basic Principles of Convection (starting p. 219) -- 5.2.1 The Mass Conservation Equation -- 5.2.2 The Momentum Equations -- 5.2.3 The Energy Equation -- 5.3 Laminar Boundary Layer Over a Plane Wall (starting p. 231) -- 5.3.1 The Velocity Boundary Layer -- 5.3.2 The Thermal Boundary Layer (Isothermal Wall) -- 5.3.3 Nonisothermal Wall Conditions -- 5.3.4 Film Temperature -- 5.4 Turbulent Boundary Layer over a Plane Wall (starting p. 248) -- 5.4.1 Transition from Laminar to Turbulent Flow -- 5.4.2 Time-Averaged Equations -- 5.4.3 Eddy Diffusivities -- 5.4.4 Wall Friction -- 5.4.5 Heat Transfer -- 5.5 Other External Flows (starting p. 263) -- 5.5.1 Single Cylinder in Cross-Flow -- 5.5.2 Sphere -- 5.5.3 Other Body Shapes -- 5.5.4 Arrays of Cylinders in Cross-Flow -- 5.5.5 Turbulent Jets -- 6 Internal Forced Convection (starting p. 290) -- 6.1 Laminar Flow Through a Duct (starting p. 290) -- 6.1.1 The Flow Entrance Region -- 6.1.2 The Fully Developed Flow Region -- 6.1.3 Friction Factor and Pressure Drop -- 6.2 Heat Transfer in Laminar Flow (starting p. 299) -- 6.2.1 The Thermal Entrance Region -- 6.2.2 The Thermally Fully Developed Region -- 6.2.3 Uniform Wall Heat Flux -- 6.2.4 Isothermal Wall -- 6.3 Turbulent Flow (starting p. 309) -- 6.3.1 Transition, Entrance Region, and Fully Developed Flow -- 6.3.2 Friction Factor and Pressure Drop -- 6.3.3 Heat Transfer Coefficient -- 6.4 The Total Heat Transfer Rate (starting p. 318) -- 7 Natural Convection (starting p. 335) -- 7.1 What Drives the Natural Convection Flow? (starting p. 335) -- 7.2 Boundary Layer Flow Along a Vertical Wall (starting p. 336) -- 7.2.1 The Boundary Layer-Simplified Equations -- 7.2.2 Scale Analysis of the Laminar Regime -- 7.2.3 Isothermal Wall (Laminar Flow) -- 7.2.4 Transition and the Effect of Turbulence on Heat Transfer -- 7.2.5 Uniform Wall Heat Flux -- 7.3 Other External Flow Configurations (starting p. 354) -- 7.3.1 Thermally Stratified Fluid Reservoir -- 7.3.2 Inclined Walls -- 7.3.3 Horizontal Walls -- 7.3.4 Horizontal Cylinder -- 7.3.5 Sphere -- 7.3.6 Vertical Cylinder -- 7.3.7 Other Immersed Bodies -- 7.4 Internal Flow Configurations (starting p. 365) -- 7.4.1 Vertical Channels -- 7.4.2 Enclosures Heated from the Side -- 7.4.3 Enclosures Heated from Below -- 7.4.4 Inclined Enclosures -- 7.4.5 Annular Space Between Horizontal Cylinders -- 7.4.6 Annular Space Between Concentric Spheres -- 8 Convection with Change of Phase (starting p. 398) -- 8.1 Condensation Heat Transfer (starting p. 398) -- 8.1.1 Laminar Film on a Vertical Surface -- 8.1.2 Turbulent Film on a Vertical Surface -- 8.1.3 Film Condensation in Other Configurations -- 8.1.4 Dropwise and Direct-Contact Condensation -- 8.2 Boiling Heat Transfer (starting p. 419) -- 8.2.1 Pool Boiling Regimes -- 8.2.2 Nucleate Boiling and Peak Heat Flux -- 8.2.3 Film Boiling and Minimum Heat Flux -- 8.2.4 Flow Boiling -- 9 Heat Exchangers (starting p. 444) -- 9.1 Classification of Heat Exchangers (starting p. 444) -- 9.2 Overall Heat Transfer Coefficient (starting p. 452) -- 9.3 The Log-Mean Temperature Difference Method (starting p. 458) -- 9.3.1 Parallel Flow -- 9.3.2 Counterflow -- 9.3.3 Other Flow Arrangements -- 9.4 The Effectiveness -- NTU Method (starting p. 468) -- 9.4.1 Effectiveness and Limitations Posed by the Second Law -- 9.4.2 Parallel Flow -- 9.4.3 Counterflow -- 9.4.4 Other Flow Arrangements -- 9.5 Pressure Drop (starting p. 479) -- 9.5.1 Pumping Power -- 9.5.2 Abrupt Contraction and Enlargement -- 9.5.3 Acceleration and Deceleration -- 9.5.4 Tube Bundles in Cross-Flow -- 9.5.5 Compact Heat Exchanger Surfaces -- 10 Radiation (starting p. 505) -- 10.1 Introduction (starting p. 505) -- 10.2 Blackbody Radiation (starting p. 506) -- 10.2.1 Definitions -- 10.2.2 Temperature and Energy -- 10.2.3 Intensity -- 10.2.4 Emissive Power -- 10.3 Heat Transfer Between Black Surfaces (starting p. 519) -- 10.3.1 The Geometric View Factor -- 10.3.2 Relations Between View Factors -- 10.3.3 Two-Surface Enclosures -- 10.4 Diffuse-Gray Surfaces (starting p. 530) -- 10.4.1 Emissivity -- 10.4.2 Absorptivity and Reflectivity -- 10.4.3 Kirchhoff's Law -- 10.4.4 Two-Surface Enclosures -- 10.4.5 Enclosures with More Than Two Surfaces -- 10.5 Participating Media (starting p. 551) -- 10.5.1 Volumetric Absorption -- 10.5.2 Gas Emissivities and Absorptivities -- 10.5.3 Gas Surrounded by Black Surface -- 10.5.4 Gray Medium Surrounded by Diffuse-Gray Surfaces -- 11 Mass Transfer Principles (starting p. 576) -- 11.1 The Analogy Between Mass Transfer and Heat Transfer (starting p. 576) -- 11.2 The Conservation of Chemical Species (starting p. 578) -- 11.2.1 Species Velocity Versus Bulk Velocity -- 11.2.2 Diffusion Mass Flux -- 11.2.3 Fick's Law -- 11.2.4 Molar Concentration and Molar Flux -- 11.3 Diffusion Through a Stationary Medium (starting p. 584) -- 11.3.1 Steady Diffusion -- 11.3.2 Mass Diffusivities -- 11.3.3 Boundary Conditions -- 11.3.4 Time-Dependent Diffusion -- 11.4 Convection (starting p.

597) -- 11.4.1 Forced Convection in Laminar Boundary Layer Flow -- 11.4.2 The Impermeable Surface Model -- 11.4.3 Other External Forced-Convection Configurations -- 11.4.4 Internal Forced Convection -- 11.4.5 Natural Convection -- App. A: Constants and Conversion Factors (starting p. 618) -- App. B: Properties of Solids (starting p. 623) -- App. C: Properties of Liquids (starting p. 637) -- App. D: Properties of Gases (starting p. 645) -- App. E: Mathematical Formulas (starting p. 652) -- App. F: Local Reynolds Number Transition Criterion (starting p. 658) -- Author Index (starting p. 665) -- Subject Index (starting p. 671)

Emphasizing an interdisciplinary approach to thermal engineering which attempts to accurately reflect practice and problems in the field, this textbook integrates key industrial applications into three traditional content areas: conduction, convection and radiation.

There are no comments on this title.

to post a comment.