Amazon cover image
Image from Amazon.com

Mathematics and statistics for financial risk management / Michael B. Miller

By: Material type: TextTextPublication details: Hoboken, New Jersey : John Wiley & Son, Inc., c2012Description: xi, 291 pages ; 24 cmISBN:
  • 9781118170625
Subject(s): LOC classification:
  • HD 61 .M55 2012
Contents:
Preface -- Acknowledgments -- CHAPTER 1. Some Basic Math -- Logarithms -- Log Returns -- Compounding -- Limited Liability -- Graphing Log Returns -- Continuously Compounded Returns -- Combinatorics -- Discount Factors -- Geometric Series -- Problems -- CHAPTER 2 Probabilities -- Discrete Random Variables -- Continuous Random Variables -- Mutually Exclusive Events -- Independent Events -- Probability Matrices -- Conditional Probability -- Bayes' Theorem -- Problems -- CHAPTER 3. Basic Statistics -- Averages -- Expectations -- Variance and Standard Deviation -- Standardized Variables -- Covariance -- Correlation -- Application: Portfolio Variance and Hedging -- Moments -- Skewness -- Kurtosis -- Coskewness and Cokurtosis -- Best Linear Unbiased Estimator (BLUE) -- Problems -- CHAPTER 4 Distributions -- Parametric Distributions -- Uniform Distribution -- Bernoulli Distribution -- Binomial Distribution -- Poisson Distribution -- Normal Distribution -- Lognormal Distribution -- Central Limit Theorem -- Application: Monte Carlo Simulations Part I: Creating Normal Random Variables -- Chi-Squared Distribution -- Student's t Distribution -- F -Distribution -- Mixture Distributions -- Problems -- CHAPTER 5 Hypothesis Testing & Confidence Intervals -- The Sample Mean Revisited -- Sample Variance Revisited -- Confidence Intervals -- Hypothesis Testing -- Chebyshev's Inequality -- Application: VaR -- Problems -- CHAPTER 6 Matrix Algebra -- Matrix Notation -- Matrix Operations -- Application: Transition Matrices -- Application: Monte Carlo Simulations Part II: Cholesky Decomposition -- Problems -- CHAPTER 7 Vector Spaces -- Vectors Revisited -- Orthogonality -- Rotation -- Principal Component Analysis -- Application: The Dynamic Term Structure of Interest Rates -- Application: The Structure of Global Equity Markets -- Problems -- CHAPTER 8 Linear Regression Analysis -- Linear Regression (One Regressor) -- Linear Regression (Multivariate) -- Application: Factor Analysis -- Application: Stress Testing -- Problems -- CHAPTER 9 Time Series Models -- Random Walks -- Drift-Diffusion -- Autoregression -- Variance and Autocorrelation -- Stationarity -- Moving Average -- Continuous Models -- Application: GARCH -- Application: Jump-Diffusion -- Application: Interest Rate Models -- Problems -- CHAPTER 10 Decay Factors -- Mean -- Variance -- Weighted Least Squares -- Other Possibilities -- Application: Hybrid VaR -- Problems -- APPENDIX A Binary Numbers -- APPENDIX B Taylor Expansions -- APPENDIX C Vector Spaces -- APPENDIX D Greek Alphabet -- APPENDIX E Common Abbreviations -- Answers -- References -- About the Author -- Index.
Summary: Mathematics and Statistics for Financial Risk Management is a practical guide to modern financial risk management for both practitioners and academics. The recent financial crisis and its impact on the broader economy underscore the importance of financial risk management in today's world.
Item type: Books
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Collection Call number Copy number Status Date due Barcode
Books Books National University - Manila LRC - Annex II General Circulation Gen. Ed. - CBA GC HD 61 .M55 2012 (Browse shelf(Opens below)) c.1 Available NULIB000019358

Preface -- Acknowledgments -- CHAPTER 1. Some Basic Math -- Logarithms -- Log Returns -- Compounding -- Limited Liability -- Graphing Log Returns -- Continuously Compounded Returns -- Combinatorics -- Discount Factors -- Geometric Series -- Problems -- CHAPTER 2 Probabilities -- Discrete Random Variables -- Continuous Random Variables -- Mutually Exclusive Events -- Independent Events -- Probability Matrices -- Conditional Probability -- Bayes' Theorem -- Problems -- CHAPTER 3. Basic Statistics -- Averages -- Expectations -- Variance and Standard Deviation -- Standardized Variables -- Covariance -- Correlation -- Application: Portfolio Variance and Hedging -- Moments -- Skewness -- Kurtosis -- Coskewness and Cokurtosis -- Best Linear Unbiased Estimator (BLUE) -- Problems -- CHAPTER 4 Distributions -- Parametric Distributions -- Uniform Distribution -- Bernoulli Distribution -- Binomial Distribution -- Poisson Distribution -- Normal Distribution -- Lognormal Distribution -- Central Limit Theorem -- Application: Monte Carlo Simulations Part I: Creating Normal Random Variables -- Chi-Squared Distribution -- Student's t Distribution -- F -Distribution -- Mixture Distributions -- Problems -- CHAPTER 5 Hypothesis Testing & Confidence Intervals -- The Sample Mean Revisited -- Sample Variance Revisited -- Confidence Intervals -- Hypothesis Testing -- Chebyshev's Inequality -- Application: VaR -- Problems -- CHAPTER 6 Matrix Algebra -- Matrix Notation -- Matrix Operations -- Application: Transition Matrices -- Application: Monte Carlo Simulations Part II: Cholesky Decomposition -- Problems -- CHAPTER 7 Vector Spaces -- Vectors Revisited -- Orthogonality -- Rotation -- Principal Component Analysis -- Application: The Dynamic Term Structure of Interest Rates -- Application: The Structure of Global Equity Markets -- Problems -- CHAPTER 8 Linear Regression Analysis -- Linear Regression (One Regressor) -- Linear Regression (Multivariate) -- Application: Factor Analysis -- Application: Stress Testing -- Problems -- CHAPTER 9 Time Series Models -- Random Walks -- Drift-Diffusion -- Autoregression -- Variance and Autocorrelation -- Stationarity -- Moving Average -- Continuous Models -- Application: GARCH -- Application: Jump-Diffusion -- Application: Interest Rate Models -- Problems -- CHAPTER 10 Decay Factors -- Mean -- Variance -- Weighted Least Squares -- Other Possibilities -- Application: Hybrid VaR -- Problems -- APPENDIX A Binary Numbers -- APPENDIX B Taylor Expansions -- APPENDIX C Vector Spaces -- APPENDIX D Greek Alphabet -- APPENDIX E Common Abbreviations -- Answers -- References -- About the Author -- Index.

Mathematics and Statistics for Financial Risk Management is a practical guide to modern financial risk management for both practitioners and academics. The recent financial crisis and its impact on the broader economy underscore the importance of financial risk management in today's world.

There are no comments on this title.

to post a comment.