Amazon cover image
Image from Amazon.com

Fundamentals of applied electromagnetics / Fawwaz T. Ulaby and Umberto Ravaioli

By: Contributor(s): Material type: TextTextPublication details: Boston, Massachusetts : Pearson, c2015Edition: Seventh editionDescription: xxii, 503 pages : color illustrations ; 25 cmISBN:
  • 9780133356816
Subject(s): LOC classification:
  • QC 760 .U43 2015
Contents:
Introduction: Waves and Phasors -- Transmission Lines -- Vector Analysis -- Electrostatics -- Magnetostatics -- Maxwell's Equations for Time-Varying Fields -- Plane-Wave Propagation -- Wave Reflection and Transmission -- Radiation and Antennas -- Satellite Communication Systems and Radar Sensors. 1-1.Historical Timeline -- 1-1.1.EM in the Classical Era -- 1-1.2.EM in the Modern Era -- 1-2.Dimensions, Units, and Notation -- 1-3.The Nature of Electromagnetism -- 1-3.1.The Gravitational Force: A Useful Analogue -- 1-3.2.Electric Fields -- 1-3.3.Magnetic Fields -- 1-3.4.Static and Dynamic Fields -- 1-4.Traveling Waves -- 1-4.1.Sinusoidal Waves in a Lossless Medium -- TB1.LED Lighting -- 1-4.2.Sinusoidal Waves in a Lossy Medium -- 1-5.The Electromagnetic Spectrum -- 1-6.Review of Complex Numbers -- 1-7.Review of Phasors -- 1-7.1.Solution Procedure -- TB2.Solar Cells -- 1-7.2.Traveling Waves in the Phasor Domain -- Summary -- Problems -- 2-1.General Considerations -- 2-1.1.The Role of Wavelength -- 2-1.2.Propagation Modes -- 2-2.Lumped-Element Model -- 2-3.Transmission-Line Equations -- 2-4.Wave Propagation on a Transmission Line -- 2-5.The Lossless Microstrip Line -- 2-6.The Lossless Transmission Line: General Considerations -- 2-6.1.Voltage Reflection Coefficient -- 2-6.2.Standing Waves -- 2-7.Wave Impedance of the Lossless Line -- 2-8.Special Cases of the Lossless Line -- 2-8.1.Short-Circuited Line -- 2-8.2.Open-Circuited Line -- 2-8.3.Application of Short-Circuit/Open-Circuit Technique -- TB3.Microwave Ovens -- 2-8.4.Lines of Length l = n╬╗/2 -- 2-8.5.Quarter-Wavelength Transformer -- 2-8.6.Matched Transmission Line: ZL = Z0 -- 2-9.Power Flow on a Lossless Transmission Line -- 2-9.1.Instantaneous Power -- 2-9.2.Time-Average Power -- 2-10.The Smith Chart -- 2-10.1.Parametric Equations -- 2-10.2.Wave Impedance -- 2-10.3.SWR, Voltage Maxima and Minima -- 2-10.4.Impedance to Admittance Transformations -- 2-11.Impedance Matching -- 2-11.1.Lumped-Element Matching -- 2-11.2.Single-Stub Matching -- 2-12.Transients on Transmission Lines -- TB4.EM Cancer Zappers -- 2-12.1.Transient Response -- 2-12.2.Bounce Diagrams -- Summary -- Problems -- 3-1.Basic Laws of Vector Algebra -- 3-1.1.Equality of Two Vectors -- 3-1.2.Vector Addition and Subtraction -- 3-1.3.Position and Distance Vectors -- 3-1.4.Vector Multiplication -- 3-1.5.Scalar and Vector Triple Products -- 3-2.Orthogonal Coordinate Systems -- 3-2.1.Cartesian Coordinates -- 3-2.2.Cylindrical Coordinates -- 3-2.3.Spherical Coordinates -- 3-3.Transformations between Coordinate Systems -- 3-3.1.Cartesian to Cylindrical Transformations -- TB5.Global Positioning System -- 3-3.2.Cartesian to Spherical Transformations -- 3-3.3.Cylindrical to Spherical Transformations -- 3-3.4.Distance between Two Points -- 3-4.Gradient of a Scalar Field -- 3-4.1.Gradient Operator in Cylindrical and Spherical Coordinates -- 3-4.2.Properties of the Gradient Operator -- 3-5.Divergence of a Vector Field -- 3-6.Curl of a Vector Field -- TB6.X-Ray Computed Tomography -- 3-6.1.Vector Identities Involving the Curl -- 3-6.2.Stokes's Theorem -- 3-7.Laplacian Operator -- Summary -- Problems -- 4-1.Maxwell's Equations -- 4-2.Charge and Current Distributions -- 4-2.1.Charge Densities -- 4-2.2.Current Density -- 4-3.Coulomb's Law -- 4-3.1.Electric Field due to Multiple Point Charges -- 4-3.2.Electric Field due to a Charge Distribution -- 4-4.Gauss's Law -- 4-5.Electric Scalar Potential -- 4-5.1.Electric Potential as a Function of Electric Field -- 4-5.2.Electric Potential Due to Point Charges -- 4-5.3.Electric Potential Due to Continuous Distributions -- 4-5.4.Electric Field as a Function of Electric Potential -- 4-5.5.Poisson's Equation -- 4-6.Conductors -- TB7.Resistive Sensors -- 4-6.1.Drift Velocity -- 4-6.2.Resistance -- 4-6.3.Joule's Law -- 4-7.Dielectrics -- 4-7.1.Polarization Field -- 4-7.2.Dielectric Breakdown -- 4-8.Electric Boundary Conditions -- 4-8.1.Dielectric-Conductor Boundary -- 4-8.2.Conductor-Conductor Boundary -- 4-9.Capacitance -- 4-10.Electrostatic Potential Energy -- TB8.Supercapacitors as Batteries -- TB9.Capacitive Sensors -- 4-11.Image Method -- Summary -- Problems -- 5-1.Magnetic Forces and Torques -- 5-1.1.Magnetic Force on a Current-Carrying Conductor -- 5-1.2.Magnetic Torque on a Current-Carrying Loop -- 5-2.The Biot-Savart Law -- 5-2.1.Magnetic Field due to Surface and Volume Current Distributions -- 5-2.2.Magnetic Field of a Magnetic Dipole -- 5-2.3.Magnetic Force Between Two Parallel Conductors -- 5-3.Maxwell's Magnetostatic Equations -- 5-3.1.Gauss's Law for Magnetism -- 5-3.2.Ampere's Law -- TB10.Electromagnets -- 5-4.Vector Magnetic Potential -- 5-5.Magnetic Properties of Materials -- 5-5.1.Electron Orbital and Spin Magnetic Moments -- 5-5.2.Magnetic Permeability -- 5-5.3.Magnetic Hysteresis of Ferromagnetic Materials -- 5-6.Magnetic Boundary Conditions -- 5-7.Inductance -- 5-7.1.Magnetic Field in a Solenoid -- 5-7.2.Self-Inductance -- TB11.Inductive Sensors -- 5-7.3.Mutual Inductance -- 5-8.Magnetic Energy -- Summary -- Problems -- 6-1.Faraday's Law -- 6-2.Stationary Loop in a Time-Varying Magnetic Field -- 6-3.The Ideal Transformer -- 6-4.Moving Conductor in a Static Magnetic Field -- TB12.EMF Sensors -- 6-5.The Electromagnetic Generator -- 6-6.Moving Conductor in a Time-Varying Magnetic Field -- 6-7.Displacement Current -- 6-8.Boundary Conditions for Electromagnetics -- 6-9.Charge-Current Continuity Relation -- 6-10.Free-Charge Dissipation in a Conductor -- 6-11.Electromagnetic Potentials -- 6-11.1.Retarded Potentials -- 6-11.2.Time-Harmonic Potentials -- Summary -- Problems -- 7-1.Time-Harmonic Fields -- 7-1.1.Complex Permittivity -- 7-1.2.Wave Equations -- 7-2.Plane-Wave Propagation in Lossless Media -- 7-2.1.Uniform Plane Waves -- 7-2.2.General Relation Between E and H -- TB13.RFID Systems -- 7-3.Wave Polarization -- 7-3.1.Linear Polarization -- 7-3.2.Circular Polarization -- 7-3.3.Elliptical Polarization -- 7-4.Plane-Wave Propagation in Lossy Media -- 7-4.1.Low-Loss Dielectric -- 7-4.2.Good Conductor -- TB14.Liquid Crystal Display (LCD) -- 7-5.Current Flow in a Good Conductor -- 7-6.Electromagnetic Power Density -- 7-6.1.Plane Wave in a Lossless Medium -- 7-6.2.Plane Wave in a Lossy Medium -- 7-6.3.Decibel Scale for Power Ratios -- Summary -- Problems -- 8-1.Wave Reflection and Transmission at Normal Incidence -- 8-1.1.Boundary between Lossless Media -- 8-1.2.Transmission-Line Analogue -- 8-1.3.Power Flow in Lossless Media -- 8-1.4.Boundary between Lossy Media -- 8-2.Snell's Laws -- 8-3.Fiber Optics -- 8-4.Wave Reflection and Transmission at Oblique Incidence -- TB15.Lasers -- 8-4.1.Perpendicular Polarization -- 8-4.2.Parallel Polarization -- 8-4.3.Brewster Angle -- 8-5.Reflectivity and Transmissivity -- 8-6.Waveguides -- TB16.Bar-Code Readers -- 8-7.General Relations for E and H -- 8-8.TM Modes in Rectangular Waveguide -- 8-9.TE Modes in Rectangular Waveguide -- 8-10.Propagation Velocities -- 8-11.Cavity Resonators -- 8-11.1.Resonant Frequency -- 8-11.2.Quality Factor -- Summary -- Problems -- 9-1.The Hertzian Dipole -- 9-1.1.Far-Field Approximation -- 9-1.2.Power Density -- 9-2.Antenna Radiation Characteristics -- 9-2.1.Antenna Pattern -- 9-2.2.Beam Dimensions -- 9-2.3.Antenna Directivity -- 9-2.4.Antenna Gain -- 9-2.5.Radiation Resistance -- 9-3.Half-Wave Dipole Antenna -- 9-3.1.Directivity of ╬╗/2 Dipole -- 9-3.2.Radiation Resistance of ╬╗/2 Dipole -- 9-3.3.Quarter-Wave Monopole Antenna -- 9-4.Dipole of Arbitrary Length -- 9-5.Effective Area of a Receiving Antenna -- TB17.Health Risks of EM Fields -- 9-6.Friis Transmission Formula -- 9-7.Radiation by Large-Aperture Antennas -- 9-8.Rectangular Aperture with Uniform Aperture Distribution -- 9-8.1.Beamwidth -- 9-8.2.Directivity and Effective Area -- 9-9.Antenna Arrays -- 9-10.N-Element Array with Uniform Phase Distribution -- 9-11.Electronic Scanning of Arrays -- 9-11.1.Uniform-Amplitude Excitation -- 9-11.2.Array Feeding -- Summary -- Problems -- 10-1.Satellite Communication Systems -- 10-2.Satellite Transponders -- 10-3.Communication-Link Power Budget -- 10-4.Antenna Beams -- 10-5.Radar Sensors -- 10-5.1.Basic Operation of a Radar System -- 10-5.2.Unambiguous Range -- 10-5.3.Range and Angular Resolutions -- 10-6.Target Detection -- 10-7.Doppler Radar -- 10-8.Monopulse Radar -- Summary -- Problems.
Summary: Fundamentals of Applied Electromagnetics is intended for use in one- or two-semester courses in electromagnetics. It also serves as a reference for engineers. Widely acclaimed both in the U.S. and abroad, this authoritative text bridges the gap between circuits and new electromagnetics material. Ulaby begins coverage with transmission lines, leading students from familiar concepts into more advanced topics and applications. A user-friendly approach, full-color figures and images, and a set of interactive simulations will help readers understand the concepts presented.
Item type: Books
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Collection Call number Copy number Status Date due Barcode
Books Books National University - Manila LRC - Main General Circulation Electronics and Communications Engineering GC QC 760 .U43 2015 (Browse shelf(Opens below)) c.1 Available NULIB000013556

Includes bibliographical references (pages 491-492) and index.

Introduction: Waves and Phasors -- Transmission Lines -- Vector Analysis -- Electrostatics -- Magnetostatics -- Maxwell's Equations for Time-Varying Fields -- Plane-Wave Propagation -- Wave Reflection and Transmission -- Radiation and Antennas -- Satellite Communication Systems and Radar Sensors. 1-1.Historical Timeline -- 1-1.1.EM in the Classical Era -- 1-1.2.EM in the Modern Era -- 1-2.Dimensions, Units, and Notation -- 1-3.The Nature of Electromagnetism -- 1-3.1.The Gravitational Force: A Useful Analogue -- 1-3.2.Electric Fields -- 1-3.3.Magnetic Fields -- 1-3.4.Static and Dynamic Fields -- 1-4.Traveling Waves -- 1-4.1.Sinusoidal Waves in a Lossless Medium -- TB1.LED Lighting -- 1-4.2.Sinusoidal Waves in a Lossy Medium -- 1-5.The Electromagnetic Spectrum -- 1-6.Review of Complex Numbers -- 1-7.Review of Phasors -- 1-7.1.Solution Procedure -- TB2.Solar Cells -- 1-7.2.Traveling Waves in the Phasor Domain -- Summary -- Problems -- 2-1.General Considerations -- 2-1.1.The Role of Wavelength -- 2-1.2.Propagation Modes -- 2-2.Lumped-Element Model -- 2-3.Transmission-Line Equations -- 2-4.Wave Propagation on a Transmission Line -- 2-5.The Lossless Microstrip Line -- 2-6.The Lossless Transmission Line: General Considerations -- 2-6.1.Voltage Reflection Coefficient -- 2-6.2.Standing Waves -- 2-7.Wave Impedance of the Lossless Line -- 2-8.Special Cases of the Lossless Line -- 2-8.1.Short-Circuited Line -- 2-8.2.Open-Circuited Line -- 2-8.3.Application of Short-Circuit/Open-Circuit Technique -- TB3.Microwave Ovens -- 2-8.4.Lines of Length l = n╬╗/2 -- 2-8.5.Quarter-Wavelength Transformer -- 2-8.6.Matched Transmission Line: ZL = Z0 -- 2-9.Power Flow on a Lossless Transmission Line -- 2-9.1.Instantaneous Power -- 2-9.2.Time-Average Power -- 2-10.The Smith Chart -- 2-10.1.Parametric Equations -- 2-10.2.Wave Impedance -- 2-10.3.SWR, Voltage Maxima and Minima -- 2-10.4.Impedance to Admittance Transformations -- 2-11.Impedance Matching -- 2-11.1.Lumped-Element Matching -- 2-11.2.Single-Stub Matching -- 2-12.Transients on Transmission Lines -- TB4.EM Cancer Zappers -- 2-12.1.Transient Response -- 2-12.2.Bounce Diagrams -- Summary -- Problems -- 3-1.Basic Laws of Vector Algebra -- 3-1.1.Equality of Two Vectors -- 3-1.2.Vector Addition and Subtraction -- 3-1.3.Position and Distance Vectors -- 3-1.4.Vector Multiplication -- 3-1.5.Scalar and Vector Triple Products -- 3-2.Orthogonal Coordinate Systems -- 3-2.1.Cartesian Coordinates -- 3-2.2.Cylindrical Coordinates -- 3-2.3.Spherical Coordinates -- 3-3.Transformations between Coordinate Systems -- 3-3.1.Cartesian to Cylindrical Transformations -- TB5.Global Positioning System -- 3-3.2.Cartesian to Spherical Transformations -- 3-3.3.Cylindrical to Spherical Transformations -- 3-3.4.Distance between Two Points -- 3-4.Gradient of a Scalar Field -- 3-4.1.Gradient Operator in Cylindrical and Spherical Coordinates -- 3-4.2.Properties of the Gradient Operator -- 3-5.Divergence of a Vector Field -- 3-6.Curl of a Vector Field -- TB6.X-Ray Computed Tomography -- 3-6.1.Vector Identities Involving the Curl -- 3-6.2.Stokes's Theorem -- 3-7.Laplacian Operator -- Summary -- Problems -- 4-1.Maxwell's Equations -- 4-2.Charge and Current Distributions -- 4-2.1.Charge Densities -- 4-2.2.Current Density -- 4-3.Coulomb's Law -- 4-3.1.Electric Field due to Multiple Point Charges -- 4-3.2.Electric Field due to a Charge Distribution -- 4-4.Gauss's Law -- 4-5.Electric Scalar Potential -- 4-5.1.Electric Potential as a Function of Electric Field -- 4-5.2.Electric Potential Due to Point Charges -- 4-5.3.Electric Potential Due to Continuous Distributions -- 4-5.4.Electric Field as a Function of Electric Potential -- 4-5.5.Poisson's Equation -- 4-6.Conductors -- TB7.Resistive Sensors -- 4-6.1.Drift Velocity -- 4-6.2.Resistance -- 4-6.3.Joule's Law -- 4-7.Dielectrics -- 4-7.1.Polarization Field -- 4-7.2.Dielectric Breakdown -- 4-8.Electric Boundary Conditions -- 4-8.1.Dielectric-Conductor Boundary -- 4-8.2.Conductor-Conductor Boundary -- 4-9.Capacitance -- 4-10.Electrostatic Potential Energy -- TB8.Supercapacitors as Batteries -- TB9.Capacitive Sensors -- 4-11.Image Method -- Summary -- Problems -- 5-1.Magnetic Forces and Torques -- 5-1.1.Magnetic Force on a Current-Carrying Conductor -- 5-1.2.Magnetic Torque on a Current-Carrying Loop -- 5-2.The Biot-Savart Law -- 5-2.1.Magnetic Field due to Surface and Volume Current Distributions -- 5-2.2.Magnetic Field of a Magnetic Dipole -- 5-2.3.Magnetic Force Between Two Parallel Conductors -- 5-3.Maxwell's Magnetostatic Equations -- 5-3.1.Gauss's Law for Magnetism -- 5-3.2.Ampere's Law -- TB10.Electromagnets -- 5-4.Vector Magnetic Potential -- 5-5.Magnetic Properties of Materials -- 5-5.1.Electron Orbital and Spin Magnetic Moments -- 5-5.2.Magnetic Permeability -- 5-5.3.Magnetic Hysteresis of Ferromagnetic Materials -- 5-6.Magnetic Boundary Conditions -- 5-7.Inductance -- 5-7.1.Magnetic Field in a Solenoid -- 5-7.2.Self-Inductance -- TB11.Inductive Sensors -- 5-7.3.Mutual Inductance -- 5-8.Magnetic Energy -- Summary -- Problems -- 6-1.Faraday's Law -- 6-2.Stationary Loop in a Time-Varying Magnetic Field -- 6-3.The Ideal Transformer -- 6-4.Moving Conductor in a Static Magnetic Field -- TB12.EMF Sensors -- 6-5.The Electromagnetic Generator -- 6-6.Moving Conductor in a Time-Varying Magnetic Field -- 6-7.Displacement Current -- 6-8.Boundary Conditions for Electromagnetics -- 6-9.Charge-Current Continuity Relation -- 6-10.Free-Charge Dissipation in a Conductor -- 6-11.Electromagnetic Potentials -- 6-11.1.Retarded Potentials -- 6-11.2.Time-Harmonic Potentials -- Summary -- Problems -- 7-1.Time-Harmonic Fields -- 7-1.1.Complex Permittivity -- 7-1.2.Wave Equations -- 7-2.Plane-Wave Propagation in Lossless Media -- 7-2.1.Uniform Plane Waves -- 7-2.2.General Relation Between E and H -- TB13.RFID Systems -- 7-3.Wave Polarization -- 7-3.1.Linear Polarization -- 7-3.2.Circular Polarization -- 7-3.3.Elliptical Polarization -- 7-4.Plane-Wave Propagation in Lossy Media -- 7-4.1.Low-Loss Dielectric -- 7-4.2.Good Conductor -- TB14.Liquid Crystal Display (LCD) -- 7-5.Current Flow in a Good Conductor -- 7-6.Electromagnetic Power Density -- 7-6.1.Plane Wave in a Lossless Medium -- 7-6.2.Plane Wave in a Lossy Medium -- 7-6.3.Decibel Scale for Power Ratios -- Summary -- Problems -- 8-1.Wave Reflection and Transmission at Normal Incidence -- 8-1.1.Boundary between Lossless Media -- 8-1.2.Transmission-Line Analogue -- 8-1.3.Power Flow in Lossless Media -- 8-1.4.Boundary between Lossy Media -- 8-2.Snell's Laws -- 8-3.Fiber Optics -- 8-4.Wave Reflection and Transmission at Oblique Incidence -- TB15.Lasers -- 8-4.1.Perpendicular Polarization -- 8-4.2.Parallel Polarization -- 8-4.3.Brewster Angle -- 8-5.Reflectivity and Transmissivity -- 8-6.Waveguides -- TB16.Bar-Code Readers -- 8-7.General Relations for E and H -- 8-8.TM Modes in Rectangular Waveguide -- 8-9.TE Modes in Rectangular Waveguide -- 8-10.Propagation Velocities -- 8-11.Cavity Resonators -- 8-11.1.Resonant Frequency -- 8-11.2.Quality Factor -- Summary -- Problems -- 9-1.The Hertzian Dipole -- 9-1.1.Far-Field Approximation -- 9-1.2.Power Density -- 9-2.Antenna Radiation Characteristics -- 9-2.1.Antenna Pattern -- 9-2.2.Beam Dimensions -- 9-2.3.Antenna Directivity -- 9-2.4.Antenna Gain -- 9-2.5.Radiation Resistance -- 9-3.Half-Wave Dipole Antenna -- 9-3.1.Directivity of ╬╗/2 Dipole -- 9-3.2.Radiation Resistance of ╬╗/2 Dipole -- 9-3.3.Quarter-Wave Monopole Antenna -- 9-4.Dipole of Arbitrary Length -- 9-5.Effective Area of a Receiving Antenna -- TB17.Health Risks of EM Fields -- 9-6.Friis Transmission Formula -- 9-7.Radiation by Large-Aperture Antennas -- 9-8.Rectangular Aperture with Uniform Aperture Distribution -- 9-8.1.Beamwidth -- 9-8.2.Directivity and Effective Area -- 9-9.Antenna Arrays -- 9-10.N-Element Array with Uniform Phase Distribution -- 9-11.Electronic Scanning of Arrays -- 9-11.1.Uniform-Amplitude Excitation -- 9-11.2.Array Feeding -- Summary -- Problems -- 10-1.Satellite Communication Systems -- 10-2.Satellite Transponders -- 10-3.Communication-Link Power Budget -- 10-4.Antenna Beams -- 10-5.Radar Sensors -- 10-5.1.Basic Operation of a Radar System -- 10-5.2.Unambiguous Range -- 10-5.3.Range and Angular Resolutions -- 10-6.Target Detection -- 10-7.Doppler Radar -- 10-8.Monopulse Radar -- Summary -- Problems.

Fundamentals of Applied Electromagnetics is intended for use in one- or two-semester courses in electromagnetics. It also serves as a reference for engineers. Widely acclaimed both in the U.S. and abroad, this authoritative text bridges the gap between circuits and new electromagnetics material. Ulaby begins coverage with transmission lines, leading students from familiar concepts into more advanced topics and applications. A user-friendly approach, full-color figures and images, and a set of interactive simulations will help readers understand the concepts presented.

There are no comments on this title.

to post a comment.