Amazon cover image
Image from Amazon.com

An introduction to the analysis of algorithms / Robert Sedgewick and Philippe Flajolet.

By: Material type: TextTextPublication details: Upper Saddle River, New Jersey : Addision-Wesley Publishing Company, c2013Edition: Second editionDescription: xvii, 572 pages : illustrations ; 24 cmISBN:
  • 9780321905758
Subject(s): LOC classification:
  • QA 76.9.A43 .S43 2013
Contents:
Ch. One Analysis of Algorithms -- 1.1. Why Analyze an Algorithm? -- 1.2. Theory of Algorithms -- 1.3. Analysis of Algorithms -- 1.4. Average-Case Analysis -- 1.5. Example: Analysis of Quicksort -- 1.6. Asymptotic Approximations -- 1.7. Distributions -- 1.8. Randomized Algorithms -- ch. Two Recurrence Relations -- 2.1. Basic Properties -- 2.2. First-Order Recurrences -- 2.3. Nonlinear First-Order Recurrences -- 2.4. Higher-Order Recurrences -- 2.5. Methods for Solving Recurrences -- 2.6. Binary Divide-and-Conquer Recurrences and Binary Numbers -- 2.7. General Divide-and-Conquer Recurrences -- ch. Three Generating Functions -- 3.1. Ordinary Generating Functions -- 3.2. Exponential Generating Functions -- 3.3. Generating Function Solution of Recurrences -- 3.4. Expanding Generating Functions -- 3.5. Transformations with Generating Functions -- 3.6. Functional Equations on Generating Functions -- 3.7. Solving the Quicksort Median-of-Three Recurrence with OGFs -- 3.8. Counting with Generating Functions -- 3.9. Probability Generating Functions -- 3.10. Bivariate Generating Functions -- 3.11. Special Functions -- ch. Four Asymptotic Approximations -- 4.1. Notation for Asymptotic Approximations -- 4.2. Asymptotic Expansions -- 4.3. Manipulating Asymptotic Expansions -- 4.4. Asymptotic Approximations of Finite Sums -- 4.5. Euler-Maclaurin Summation -- 4.6. Bivariate Asymptotics -- 4.7. Laplace Method -- 4.8."Normal" Examples from the Analysis of Algorithms -- 4.9."Poisson" Examples from the Analysis of Algorithms -- ch. Five Analytic Combinatorics -- 5.1. Formal Basis -- 5.2. Symbolic Method for Unlabelled Classes -- 5.3. Symbolic Method for Labelled Classes -- 5.4. Symbolic Method for Parameters -- 5.5. Generating Function Coefficient Asymptotics -- ch. Six Trees -- 6.1. Binary Trees -- 6.2. Forests and Trees -- 6.3.Combinatorial Equivalences to Trees and Binary Trees -- 6.4. Properties of Trees -- 6.5. Examples of Tree Algorithms -- 6.6. Binary Search Trees -- 6.7. Average Path Length in Catalan Trees -- 6.8. Path Length in Binary Search Trees -- 6.9. Additive Parameters of Random Trees -- 6.10. Height -- 6.11. Summary of Average-Case Results on Properties of Trees -- 6.12. Lagrange Inversion -- 6.13. Rooted Unordered Trees -- 6.14. Labelled Trees -- 6.15. Other Types of Trees -- ch. Seven Permutations -- 7.1. Basic Properties of Permutations -- 7.2. Algorithms on Permutations -- 7.3. Representations of Permutations -- 7.4. Enumeration Problems -- 7.5. Analyzing Properties of Permutations with CGFs -- 7.6. Inversions and Insertion Sorts -- 7.7. Left-to-Right Minima and Selection Sort -- 7.8. Cycles and In Situ Permutation -- 7.9. Extremal Parameters -- ch. Eight Strings and Tries -- 8.1. String Searching -- 8.2.Combinatorial Properties of Bitstrings -- 8.3. Regular Expressions -- 8.4. Finite-State Automata and the Knuth-Morris-Pratt Algorithm -- 8.5. Context-Free Grammars -- 8.6. Tries -- 8.7. Trie Algorithms -- 8.8.Combinatorial Properties of Tries -- 8.9. Larger Alphabets -- ch. Nine Words and Mappings -- 9.1. Hashing with Separate Chaining -- 9.2. The Balls-and-Urns Model and Properties of Words -- 9.3. Birthday Paradox and Coupon Collector Problem -- 9.4. Occupancy Restrictions and Extremal Parameters -- 9.5. Occupancy Distributions -- 9.6. Open Addressing Hashing -- 9.7. Mappings -- 9.8. Integer Factorization and Mappings.
Summary: Despite growing interest, basic information on methods and models for mathematically analyzing algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary techniques and results in the field.
Item type: Books
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Collection Call number Copy number Status Date due Barcode
Books Books National University - Manila LRC - Main General Circulation Machine Learning GC QA 76.9.A43 .S43 2013 (Browse shelf(Opens below)) c.1 Available NULIB000010426

Includes bibliographical references and index.

Ch. One Analysis of Algorithms -- 1.1. Why Analyze an Algorithm? -- 1.2. Theory of Algorithms -- 1.3. Analysis of Algorithms -- 1.4. Average-Case Analysis -- 1.5. Example: Analysis of Quicksort -- 1.6. Asymptotic Approximations -- 1.7. Distributions -- 1.8. Randomized Algorithms -- ch. Two Recurrence Relations -- 2.1. Basic Properties -- 2.2. First-Order Recurrences -- 2.3. Nonlinear First-Order Recurrences -- 2.4. Higher-Order Recurrences -- 2.5. Methods for Solving Recurrences -- 2.6. Binary Divide-and-Conquer Recurrences and Binary Numbers -- 2.7. General Divide-and-Conquer Recurrences -- ch. Three Generating Functions -- 3.1. Ordinary Generating Functions -- 3.2. Exponential Generating Functions -- 3.3. Generating Function Solution of Recurrences -- 3.4. Expanding Generating Functions -- 3.5. Transformations with Generating Functions -- 3.6. Functional Equations on Generating Functions -- 3.7. Solving the Quicksort Median-of-Three Recurrence with OGFs -- 3.8. Counting with Generating Functions -- 3.9. Probability Generating Functions -- 3.10. Bivariate Generating Functions -- 3.11. Special Functions -- ch. Four Asymptotic Approximations -- 4.1. Notation for Asymptotic Approximations -- 4.2. Asymptotic Expansions -- 4.3. Manipulating Asymptotic Expansions -- 4.4. Asymptotic Approximations of Finite Sums -- 4.5. Euler-Maclaurin Summation -- 4.6. Bivariate Asymptotics -- 4.7. Laplace Method -- 4.8."Normal" Examples from the Analysis of Algorithms -- 4.9."Poisson" Examples from the Analysis of Algorithms -- ch. Five Analytic Combinatorics -- 5.1. Formal Basis -- 5.2. Symbolic Method for Unlabelled Classes -- 5.3. Symbolic Method for Labelled Classes -- 5.4. Symbolic Method for Parameters -- 5.5. Generating Function Coefficient Asymptotics -- ch. Six Trees -- 6.1. Binary Trees -- 6.2. Forests and Trees -- 6.3.Combinatorial Equivalences to Trees and Binary Trees -- 6.4. Properties of Trees -- 6.5. Examples of Tree Algorithms -- 6.6. Binary Search Trees -- 6.7. Average Path Length in Catalan Trees -- 6.8. Path Length in Binary Search Trees -- 6.9. Additive Parameters of Random Trees -- 6.10. Height -- 6.11. Summary of Average-Case Results on Properties of Trees -- 6.12. Lagrange Inversion -- 6.13. Rooted Unordered Trees -- 6.14. Labelled Trees -- 6.15. Other Types of Trees -- ch. Seven Permutations -- 7.1. Basic Properties of Permutations -- 7.2. Algorithms on Permutations -- 7.3. Representations of Permutations -- 7.4. Enumeration Problems -- 7.5. Analyzing Properties of Permutations with CGFs -- 7.6. Inversions and Insertion Sorts -- 7.7. Left-to-Right Minima and Selection Sort -- 7.8. Cycles and In Situ Permutation -- 7.9. Extremal Parameters -- ch. Eight Strings and Tries -- 8.1. String Searching -- 8.2.Combinatorial Properties of Bitstrings -- 8.3. Regular Expressions -- 8.4. Finite-State Automata and the Knuth-Morris-Pratt Algorithm -- 8.5. Context-Free Grammars -- 8.6. Tries -- 8.7. Trie Algorithms -- 8.8.Combinatorial Properties of Tries -- 8.9. Larger Alphabets -- ch. Nine Words and Mappings -- 9.1. Hashing with Separate Chaining -- 9.2. The Balls-and-Urns Model and Properties of Words -- 9.3. Birthday Paradox and Coupon Collector Problem -- 9.4. Occupancy Restrictions and Extremal Parameters -- 9.5. Occupancy Distributions -- 9.6. Open Addressing Hashing -- 9.7. Mappings -- 9.8. Integer Factorization and Mappings.

Despite growing interest, basic information on methods and models for mathematically analyzing algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary techniques and results in the field.

There are no comments on this title.

to post a comment.