Natural language annotation for machine learning / James Pustejovsky and Amber Stubbs
Material type:
- 9781449306663
- QA 76.9.N38 .P87 2013

Item type | Current library | Home library | Collection | Call number | Copy number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|---|
![]() |
National University - Manila | LRC - Graduate Studies General Circulation | Gen. Ed. - CCIT | GC QA 76.9.N38 .P87 2013 (Browse shelf(Opens below)) | c.1 | Available | NULIB000009215 |
Browsing LRC - Graduate Studies shelves, Shelving location: General Circulation, Collection: Gen. Ed. - CCIT Close shelf browser (Hides shelf browser)
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
GC QA 76.9.D343 .W58 2011 Data mining : practical machine learning tools and techniques / | GC QA 76.9.H85 K554 2015 Human-computer interaction : fundamentals and practice / | GC QA 76.9.M35 .M36 2014 Data structures and algorithms with JavaScript : bringing classic computing approaches to the web / | GC QA 76.9.N38 .P87 2013 Natural language annotation for machine learning / | GC QA 76.73 .F43 2014 Oracle PL/SQL programming / | GC QA 76.73 .G78 2015 Data science from scratch : first principles with Python / | GC QA 76.73 .H55 2015 Learning object-oriented programming : explore and crack the OOP code in Python, JavaScript, and C# / |
Includes bibliographical references and index.
1. The Basics -- 2. Defining your goal and dataset -- 3. Corpus analytics -- 4. Building your model and specification -- 5. Applying and adopting annotation standards -- 6. Annotation and adjudication -- 7. Training : machine learning -- 8. Testing and evaluation -- 9. Revising and reporting -- 10. Annotation : TimeML -- 11. Automatic annotation : generating TimeML -- 12. Afterword : the future of annotation.
This book is intended as a resource for people who are interested in using computers to help process natural language.
There are no comments on this title.