Amazon cover image
Image from Amazon.com

Artificial intelligence : structures and strategies for complex problem solving / George F. Luger

By: Material type: TextTextPublication details: Boston, Massachusetts : Pearson Addison-Wesley, c2010Edition: Sixth edition. | Lower Price edition/Philippine editionDescription: xxiii, 754 pages : illustrations ; 24 cmISBN:
  • 9789810695958
Subject(s): LOC classification:
  • Q 335 .L84 2010
Contents:
pt. I. Artificial intelligence : its roots and scope -- 1. AI : history and applications -- pt. II. Artificial intelligence as representation and search -- 2. The predicate calculus -- 3. Structures and strategies for state space search -- 4. Heuristic search -- 5. Stochastic methods -- 6. Control and implementation of state space search -- pt. III. Capturing intelligence : the AI challenge -- 7. Knowledge representation -- 8. Strong method problem solving -- 9. Reasoning in uncertain situations -- pt. IV. Machine iearning -- 10. Machine learning : symbol-based -- 11. Machine learning : connectionist -- 12. Machine learning : genetic and emergent -- 13. Machine learning : probabilistic -- pt. V. Advanced topics for AI problem solving -- 14. Automated reasoning -- 15. Understanding natural language -- pt. VI. Epilogue -- 16. Artificial intelligence as empirical enquiry.
Summary: In this accessible, comprehensive text, George Luger captures the essence of artificial intelligence-solving the complex problems that arise wherever computer technology is applied. Key representation techniques including logic, semantic and connectionist networks, graphical models, and many more are introduced. Presentation of agent technology and the use of ontologies are added. A new machine-learning chapter is based on stochastic methods, including first-order Bayesian networks, variants of hidden Markov models, inference with Markov random fields and loopy belief propagation. A new presentation of parameter fitting with expectation maximization learning and structure learning using Markov chain Monte Carlo sampling. Use of Markov decision processes in reinforcement learning. Natural language processing with dynamic programming (the Earley parser) and other probabilistic parsing techniques including Viterbi, are added. A new supplemental programming book is available online and in print: "AI Algorithms in Prolog, Lisp and Java (TM). "References and citations are updated throughout the Sixth Edition. For all readers interested in artificial intelligence.
Item type: Books
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Collection Call number Copy number Status Date due Barcode
Books Books National University - Manila LRC - Main General Circulation Gen. Ed. - CCIT GC Q 335 .L84 2010 (Browse shelf(Opens below)) c.1 Available NULIB000008455

Includes bibliographical references (pages 705-733) and index.

pt. I. Artificial intelligence : its roots and scope -- 1. AI : history and applications -- pt. II. Artificial intelligence as representation and search -- 2. The predicate calculus -- 3. Structures and strategies for state space search -- 4. Heuristic search -- 5. Stochastic methods -- 6. Control and implementation of state space search -- pt. III. Capturing intelligence : the AI challenge -- 7. Knowledge representation -- 8. Strong method problem solving -- 9. Reasoning in uncertain situations -- pt. IV. Machine iearning -- 10. Machine learning : symbol-based -- 11. Machine learning : connectionist -- 12. Machine learning : genetic and emergent -- 13. Machine learning : probabilistic -- pt. V. Advanced topics for AI problem solving -- 14. Automated reasoning -- 15. Understanding natural language -- pt. VI. Epilogue -- 16. Artificial intelligence as empirical enquiry.

In this accessible, comprehensive text, George Luger captures the essence of artificial intelligence-solving the complex problems that arise wherever computer technology is applied. Key representation techniques including logic, semantic and connectionist networks, graphical models, and many more are introduced. Presentation of agent technology and the use of ontologies are added. A new machine-learning chapter is based on stochastic methods, including first-order Bayesian networks, variants of hidden Markov models, inference with Markov random fields and loopy belief propagation. A new presentation of parameter fitting with expectation maximization learning and structure learning using Markov chain Monte Carlo sampling. Use of Markov decision processes in reinforcement learning. Natural language processing with dynamic programming (the Earley parser) and other probabilistic parsing techniques including Viterbi, are added. A new supplemental programming book is available online and in print: "AI Algorithms in Prolog, Lisp and Java (TM). "References and citations are updated throughout the Sixth Edition. For all readers interested in artificial intelligence.

There are no comments on this title.

to post a comment.