Practical data science with Python : (Record no. 21985)

MARC details
000 -LEADER
fixed length control field 03768nam a2200229Ia 4500
003 - CONTROL NUMBER IDENTIFIER
control field NULRC
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250520103033.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250520s9999 xx 000 0 und d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781801071970
040 ## - CATALOGING SOURCE
Transcribing agency NULRC
050 ## - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA 76.73.P98 .G46 2021
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name George, Nathan
Relator term author
245 #0 - TITLE STATEMENT
Title Practical data science with Python :
Remainder of title learn tools and techniques from hands-on examples to extract insights from data /
Statement of responsibility, etc. Nathan George
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Birmingham, UK :
Name of publisher, distributor, etc. Packt Publishing, Limited,
Date of publication, distribution, etc. c2021
300 ## - PHYSICAL DESCRIPTION
Extent xxiii, 595 pages ;
Dimensions 24 cm.
365 ## - TRADE PRICE
Price amount USD52
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Includes index.
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note An Introduction and the Basics -- Chapter 1: Introduction to Data Science -- The data science origin story -- The top data science tools and skills -- Python -- Other programming languages -- GUIs and platforms -- Cloud tools -- Statistical methods and math -- Collecting, organizing, and preparing data -- Software development -- Business understanding and communication -- Specializations in and around data science -- Machine learning -- Business intelligence -- Deep learning -- Data engineering -- Big data Statistical methods -- Natural Language Processing (NLP) -- Artificial Intelligence (AI) -- Choosing how to specialize -- Data science project methodologies -- Using data science in other fields -- CRISP-DM -- TDSP -- Further reading on data science project management strategies -- Other tools -- Test your knowledge -- Summary -- Chapter 2: Getting Started with Python -- Installing Python with Anaconda and getting started -- Installing Anaconda -- Running Python code -- The Python shell -- The IPython Shell -- Jupyter -- Why the command line? -- Command line basics Installing and using a code text editor -- VS Code -- Editing Python code with VS Code -- Running a Python file -- Installing Python packages and creating virtual environments -- Python basics -- Numbers -- Strings -- Variables -- Lists, tuples, sets, and dictionaries -- Lists -- Tuples -- Sets -- Dictionaries -- Loops and comprehensions -- Booleans and conditionals -- Packages and modules -- Functions -- Classes -- Multithreading and multiprocessing -- Software engineering best practices -- Debugging errors and utilizing documentation -- Debugging -- Documentation -- Version control with Git Code style -- Productivity tips -- Test your knowledge -- Summary -- Dealing with Data -- Chapter 3: SQL and Built-in File Handling Modules in Python -- Introduction -- Loading, reading, and writing files with base Python -- Opening a file and reading its contents -- Using the built-in JSON module -- Saving credentials or data in a Python file -- Saving Python objects with pickle -- Using SQLite and SQL -- Creating a SQLite database and storing data -- Using the SQLAlchemy package in Python -- Test your knowledge -- Summary -- Chapter 4: Loading and Wrangling Data with Pandas and NumPy Data wrangling and analyzing iTunes data -- Loading and saving data with Pandas -- Understanding the DataFrame structure and combining/concatenating multiple DataFrames -- Exploratory Data Analysis (EDA) and basic data cleaning with Pandas -- Examining the top and bottom of the data -- Examining the data's dimensions, datatypes, and missing values -- Investigating statistical properties of the data -- Plotting with DataFrames -- Cleaning data -- Filtering DataFrames -- Removing irrelevant data -- Dealing with missing values -- Dealing with outliers -- Dealing with duplicate values.
520 ## - SUMMARY, ETC.
Summary, etc. The book provides a one-stop solution for getting into data science with Python and teaches how to extract insights from data.
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element BIG DATA
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Library of Congress Classification
Koha item type Books
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection Home library Current library Shelving location Date acquired Source of acquisition Cost, normal purchase price Total checkouts Full call number Barcode Date last seen Copy number Price effective from Koha item type
    Library of Congress Classification     Machine Learning LRC - Main National University - Manila General Circulation 06/08/2024 Purchased - Amazon 52.00   GC QA 76.73.P98 .G46 2021 NULIB000019744 05/20/2025 c.1 05/20/2025 Books